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We review the observations and the basic laws describing the essential aspects of col-
lective motion – being one of the most common and spectacular manifestation of co-
ordinated behavior. Our aim is to provide a balanced discussion of the various facets
of this highly multidisciplinary field, including experiments, mathematical methods and
models for simulations, so that readers with a variety of background could get both the
basics and a broader, more detailed picture of the field. The observations we report
on include systems consisting of units ranging from macromolecules through metallic
rods and robots to groups of animals and people. Some emphasis is put on models that
are simple and realistic enough to reproduce the numerous related observations and are
useful for developing concepts for a better understanding of the complexity of systems
consisting of many simultaneously moving entities. As such, these models allow the es-
tablishing of a few fundamental principles of flocking. In particular, it is demonstrated,
that in spite of considerable differences, a number of deep analogies exist between equi-
librium statistical physics systems and those made of self-propelled (in most cases living)
units. In both cases only a few well defined macroscopic/collective states occur and the
transitions between these states follow a similar scenario, involving discontinuity and
algebraic divergences.
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I. INTRODUCTION

Most of us must have been fascinated by the eye catch-
ing displays of collectively moving animals. Schools of
fish can move in a rather orderly fashion or change di-
rection amazingly abruptly. Under the pressure from a
nearby predator the same fish can swirl like a vehemently
stirred fluid. Flocks of hundreds of starlings can fly to
the fields as a uniformly moving group, but then, after
returning to their roosting site, produce turbulent, puz-
zling aerial displays. There are a huge number of further
examples both from the living and the non-living world
for the rich behavior in systems consisting of interacting,
permanently moving units.

Although persistent motion is one of the conspicuous
features of life, recently several physical and chemical sys-
tems have also been shown to possess interacting, “self-
propelled” units. Examples include rods or disks of var-
ious kinds on a vibrating table (Blair et al., 2003; De-
seigne et al., 2010; Ibele et al., 2009; Kudrolli et al., 2008;
Narayan et al., 2006, 2007; Yamada et al., 2003).

The concept of the present review is to on one hand
introduce the readers to the field of flocking by discussing
the most influential “classic” works on collective motion
as well as providing an overview of the state of the art
for those who consider doing research in this thriving
multidisciplinary area. We have put a special stress on
coherence and aimed at presenting a balanced account of
the various experimental and theoretical approaches.

In addition to presenting the most appealing results
from the quickly growing related literature we also deliver
a critical discussion of the emerging picture and summa-
rize our present understanding of flocking phenomena in
the form of a systematic phenomenological description of
the results obtained so far. In turn, such a description
may become a good starting point for developing a uni-
fied theoretical treatment of the main laws of collective
motion.

A. The basic questions we address

Are these observed motion patterns system specific?
Such a conclusion would be quite common in biology. Or,
alternatively, are there only a few typical classes which all
of the collective motion patterns belong to? This would
be a familiar thought for a statistical physicist dealing
with systems of an enormous number of molecules in
equilibrium. In fact, collective motion is one of the man-
ifestations of a more general class of phenomena called
collective behavior (Vicsek, 2001a). The studies of the
latter have identified a few general laws related to how
new, more complex qualitative features emerge as many
simpler units are interacting.

There is an amazing variety of systems made of such
units bridging over many orders of magnitude in size and

purely physical or chemical to and biological systems.
Will they still exhibit the same motion patterns? If yes,
what are these patterns and are there any underlying
universal principles predicting that this has to be so (e.g.,
non-conservation of moments during interactions)?

In Fig. 1, we show a gallery of pictures representing a
few of the many possible examples visualizing the variety
of collective motion patterns occurring in a highly diverse
selection of biological systems.

B. Collective behavior

In a system consisting of many similar units (such
as, e.g., many molecules, but also, flocks of birds) the
interactions between the units can be simple (attrac-
tion/repulsion) or more complex (combinations of simple
interactions) and can occur between neighbors in space or
in an underlying network. Under some conditions, transi-
tions can occur during which the objects adopt a pattern
of behavior almost completely determined by the collec-
tive effects due to the other units in the system. The
main feature of collective behavior is that an individual
unit’s action is dominated by the influence of the “oth-
ers” – the unit behaves entirely differently from the way it
would behave on its own. Such systems show interesting
ordering phenomena as the units simultaneously change
their behavior to a common pattern (see, e.g., Vicsek
(2001b)). For example, a group of feeding pigeons ran-
domly oriented on the ground will order themselves into
an orderly flying flock when leaving the scene after a big
disturbance.

Understanding new phenomena (in our case, the tran-
sitions in systems of collectively moving units) is usually
achieved by relating them to known ones: a more com-
plex system is understood by analyzing its simpler vari-
ants. In the 1970s, there was a breakthrough in statistical
physics in the form of the ‘renormalization group method’
(Wilson, 1975b) which gave physicists a deep theoretical
understanding of a general type of phase transition. The
theory showed that the main features of transitions in
equilibrium systems are insensitive to the details of the
interactions between the objects in a system. Pushing
the analogy further, we have reasons to suppose that the
orientational forces between atoms can result in ordering
phenomena similar to those seen in groups of much more
complex units, such as collectively moving organisms.

C. The main difference between equilibrium and
self-propelled systems

The essential difference between collective phenomena
in standard statistical physics and biology is that the
“collision rule” is principally altering in the two kinds
of systems: in the latter ones it does not preserve the
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FIG. 1 (Color) A gallery of images related to collective behav-
ior. Among others, it illustrates the possible existence of very
general behavioral patterns. (a) Wingless Locusts are march-
ing in the field. (b) A rotating colony of South American fire
ants. (c) A nice three-dimensional array of golden rays. (d)
Fish are known to produce such vortices. (e) Before roosting,
thousands of starlings are producing a fascinating aerial dis-
play. They are also trying to avoid a predator bird close to
the central finger-like structure. (f) A herd of zebra. (g) Peo-
ple spontaneously ordered into “traffic lanes” as they cross a
pedestrian bridge in large numbers. (h) Although sheep are
known to move very coherently, just as the corresponding the-
ory predicts, when simply hanging around (no motion), well
developed orientational patterns cannot emerge.

momentum. Here the expression collision rule stands for
specifying how the states (velocities) of two individual
units change during their interaction. In equilibrium sys-
tems, according to standard Newtonian mechanics the
total momentum is preserved and that is how the well
known Maxwellian velocity distribution is being built up
from arbitrary initial conditions in a closed Galilean sys-
tem. The mere condition of the units maintaining an

approximate absolute velocity can be realized in an open
system only and drives away the driven particles from
any kind of equilibrium behavior. Currents are bound
to be generated and the overall momentum is gradually
increasing if the initial state is random (in this case the
initial momentum is very small because the moments of
the oppositely moving particles cancel out). However, for
this overall ordering to occur the random perturbations
(acting against ordering) have to be small enough.

Most remarkably, however, in spite of this principal dif-
ference, a number of deep analogies can still be observed
between equilibrium statistical physics systems and those
made of self-propelled (living) units. In both only a few
well defined macroscopic/collective states occur and the
transitions between these states follow a similar scenario
as well (discontinuity, algebraic divergences, etc).

D. Goals to be achieved

The approach of treating flocks, or even crowds, as
systems of particles naturally leads to the idea of apply-
ing the successful methods of statistical physics, such as
computer simulations or theories on scaling, to the de-
tailed description of the collective behavior of organisms.
Naturally, for better progress, observations/experiments
and modeling have to be intimately related. Indeed, over
the past few decades, an increasingly growing number
of significant attempts have been made to both observe
and describe flocking as well as modeling (simulate) the
most conspicuous features of the observed natural sys-
tems ranging from molecules to groups of mammals.

It would be quite an achievement if we could establish
a systematic chart of the types of collective motion since
many times understanding is achieved through classifica-
tion. There are reasons and arguments to think that the
same patterns of collective motion apply to the collec-
tion of molecules up to groups of humans. There must
be some – still to be discovered – laws of such systems
from which the above observation follows.

II. OBSERVATIONS AND EXPERIMENTS

It seems that collective motion (or flocking: these two
notions will be used as synonyms in this review although
in principle there are some subtle differences in their
meanings) is displayed by almost every living system con-
sisting of at least dozens of units. One of the main points
in this review is that the kinds of systems and the types
of collective motion patterns have a greater variety than
originally thought of. Below we give a – naturally incom-
plete – list of systems in which collective motion has been
observed (with only some of the representative references
included):
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• Non-living systems: nematic fluids, shaken metal-
lic rods, nano swimmers, simple robots, boats, etc.
(Ibele et al., 2009; Kudrolli, 2010; Narayan et al.,
2007; Suematsu et al., 2010)

• Macromolecules (Butt et al., 2010; Schaller et al.,
2010)

• Bacteria colonies (Cisneros et al., 2007; Czirók
et al., 1996, 2001; Sokolov et al., 2007)

• Amoeba (Kessler and Levine, 1993; Nagano, 1998;
Rappel et al., 1999)

• Cells (Arboleda-Estudillo et al., 2010; Belmonte
et al., 2008; Friedl and Gilmour, 2009; Szabó et al.,
2006)

• Insects (Buhl et al., 2006; Couzin and Franks, 2003)

• Fish (Becco et al., 2006; Hemelrijk and Kunz, 2005;
Parrish et al., 2002; Ward et al., 2008)

• Birds (Bajec and Heppner, 2009; Ballerini et al.,
2008; Hayakawa, 2010; Heppner, 1997)

• Mammals (Fischhoff et al., 2007; King et al., 2008;
Sueur and Petit, 2008)

• Humans (Faria et al., 2010b; Helbing et al., 2000,
1997)

A. Physical, chemical and biomolecular systems

Along with the accumulating observations and experi-
ments clarified the recognition, that flocking – collective
motion – emerges not only in systems consisting of liv-
ing beings, but also among interacting physical objects,
based on mere physical interactions without communica-
tion.
Up to now, the simplest physical system has been de-

scribed by Ibele et al. (2009) who reported about simple
autonomous micromotors, which are micrometer-sized
silver chloride (AgCl) particles exhibiting collective mo-
tion in deionized water under UV illumination. The au-
tonomous motion these particles exhibit under the above
circumstances (deionized water and UV light) is due to
their asymmetric photo-decomposition, and the spatial
self-organization is due to the ions which are secreted by
the AgCl particles as they move.
Various experiments on non-living self propelled parti-

cles (SPPs) possessing diverse features advocate that the
shape and symmetry of the SPPs play an important role
in their collective dynamics, and that large-scale inhomo-
geneity and coherent motion can appear in a system in
which particles do not communicate except by contact.
Symmetric (or “apolar”) rods on vibrating surfaces have
been observed to form nematic order and under certain

FIG. 2 Periodically, vertically vibrated granular rods sponta-
neously form vortices which grow with time. From Blair et al.
(2003)

FIG. 3 Experiments performed in an annulus with a single
row of rods reveal that the rod motion is generated when
these objects are inclined from the vertical, and is always in
the direction of the inclination. From Blair et al. (2003)

conditions found to exhibit persistent swirling as well
(Galanis et al., 2006; Narayan et al., 2006). Narayan
et al. (2007) have also investigated symmetric macro-
scopic rods and have found giant number fluctuations
lasting long, decaying only as a logarithmic function of
time (see Fig. 4).

Periodically, vertically vibrated granular rods form
vortex patterns (Blair et al., 2003). Above a critical pack-
ing fraction, the ordered domains – consisting of nearly
vertical rods – spontaneously form and coexist with hor-
izontal rods (see Fig. 2). The vortices nucleate and grow
as a function of time. Experiments performed in an annu-
lus with a single row of rods revealed that the rod motion
was generated when these objects were inclined from the
vertical, and was always in the direction of the inclina-
tion (see Fig. 3). The relationship between the covered
area fraction and the diffusion properties in the case of
self-propelled rods was also studied (Kudrolli, 2010).

Kudrolli et al. (2008) have made experiments with po-
lar (non-symmetric) rods on a vibrating surface. Their
rods had a symmetric shape, but a non-symmetrical mass
distribution which caused them to move toward their
lighter end. They have observed local ordering, aggre-
gation at the side walls, and – in contrast with round-
shaped self-propelled particles – clustering behavior.

Tinsley et al. (2008) presented an experimental study
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FIG. 4 A snapshot of the nematic order assumed by 2820
rods which are sinusoidally vibrated perpendicularly to the
plane of the image. The large density fluctuations take several
minutes to relax and to form elsewhere. From Narayan et al.
(2007).

on interacting particle-like waves (see more about the
design of wave propagation in Sakurai et al. (2002))
and suggested this method as an opportunity to in-
vestigate small groups of SPPs in laboratory environ-
ment. The stabilized wave-segments they have used
were those appearing in the light-sensitive Belousov-
Zhabotinsky reaction (Zaikin and Zhabotinsky, 1970).
These constant-velocity chemical waves can be inter-
preted as self-propelled particles which are linked to each
other via appropriate interaction potentials.

Along with the accumulation of the experimental re-
sults, the assumption that only a few parameters and
factors play a crucial role in the emergence of the ubiq-
uitous phenomena of collective motion has been increas-
ingly supported. Particle–density turns out to be one of
these parameters, or more precisely, the density of the
objects or living beings that exhibit collective motion.

The essential role of the density has been demonstrated
in a set of elegant experiments on persistently moving
biomolecules. In these investigations – involving the
smallest, experimentally realized self-propelled particles
so far – the so called in vitro motility assay is utilized to
study the emergence of collective motion on a molecular
level. In such an assay actin filaments and fluorescently
labeled reporter filaments are propelled by immobilized
molecular motors (myosin molecules) attached to a pla-
nar surface, as depicted on Fig. 5. In a very recent
study, Butt et al. (2010) were the first to observe the
bulk alignment of the actin filaments sliding movement
for high concentration values even though they were pow-
ered by randomly oriented myosin molecules (Fig. 6).
According to their observations, domains of oriented fila-
ments formed spontaneously and were separated by dis-
tinct boundaries. The authors suggested that the self-
alignment of actin filaments might make an important
contribution to cell polarity and provide a mechanism by
which cell migration direction might respond to chemical

FIG. 5 (Color online) The setup of the experiment designed
to investigate the effect of density on the collective motion
of actin filaments. (a) Filament-motion is visualized by the
usage of fluorescently labeled reporter filaments. The ratio
of labeled to unlabeled molecules is around 1:200. (b) For
low filament densities a disordered structure is found, where
the bio-molecules perform persistent random walk without
directional preference. Scale bar represents 50 µm. From
Schaller et al. (2010).

FIG. 6 (Color online) Motion of actin filaments in a motil-
ity assay. (a) The individual filaments were tracked auto-
matically and the positions (denoted by circles) were used
to estimate their (color coded) direction of motion. (b) The
color coded (as above) paths plotted as a continuous track to
highlight the trajectory of each filament. The tracks shown
are from a 100-frame video sequence recorded at 25 frames/s.
After Butt et al. (2010).
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FIG. 7 (Color online) The typical behavior of the bio-
molecule actin filament in the function of density. The dis-
ordered structure (a) becomes ordered (b) above a certain
density ρ∗, which is around 0.8 filaments per µm2. In this
high density regime, wave-like structures can be observed.
Above 0.2 filaments per µm2, spirals or swirls can be observed
as well (c), which are characterized by huge angular velocity
gradients destabilizing the swirl. This limited stability is vis-
ible near to the central region of the pattern, where crushing
events of the filament current are likely to develop. Scale bar
is 50 µm. Adapted from Schaller et al. (2010).

cues. At almost the same time, Schaller et al. (2010) un-
dertook a very similar study, but in a somewhat different
context of active matter and using extensive evaluation
and computational techniques to characterize the phe-
nomenon. They also found that the onset of collective
motion was a result of increased filament density. In par-
ticular, for low filament densities a disordered phase has
been discerned, in which individual filaments performed
random walk without any directional preference. Above
a certain density, which was around 0.2 filaments per
µm2, in an intermediate regime, the disordered phase be-
came unstable and small clusters of coherently moving fil-
aments emerged. Further concentration-increase caused
growth in the cluster-sizes, but the bunches remained ho-
mogeneous. Then, above 0.8 filaments per µm2 (signed
with ρ∗ on Fig. 7), persistent density fluctuations oc-
curred, leading to the formation of wave-like structures.
The authors also identified the weak and local alignment-
interactions to be essential for the formation of the pat-
terns and their dynamics. A simulation model was used
to interpret the interplay between the underlying micro-
scopic dynamics and the emergence of global patterns in
a good agreement with the observations.

B. Bacterial colonies

Since microorganism colonies (such as bacteria
colonies) are one of the simplest systems consisting of
many interacting organisms, yet exhibiting a non-trivial
macroscopic behavior, a number of studies have focused
on the experimental and theoretical aspects of colony for-
mation and on the related collective behavior (Alt et al.,
1997; Shapiro and Dworkin, 1997; Vicsek, 2001a). The
quantitative investigations of how bacterial colonies of

various complex spatial patterns emerge go back to the
early 1990-es (Ben-Jacob et al., 1994; Fujikawa and Mat-
sushita, 1989; Vicsek et al., 1990). During these inves-
tigations it has become evident that the bacteria within
the colonies growing on wet agar surfaces produce an ex-
citing variety of collective motion patterns: among oth-
ers, motions similar to super-diffusing particles, highly
correlated turbulent as well as rotating states have been
observed, and colony formations exhibiting various pat-
terns including those reminiscent of fractals. A special
category are those studies which contain not only an ob-
servation or a theoretical model, but a matching pair
of them: detailed description of an observation together
with a computational or mathematical model that ac-
counts for the observations (Czirók et al., 1996, 2001;
Wu et al., 2007, 2009).

Czirók et al. (1996) were the first to interpret an exper-
imentally observed complex behavior through a many-
particle-type simulation, incorporating realistic rules.
They have investigated the intricate colony formation
and collective motion (formation of rotating dense aggre-
gates, migration of bacteria in clusters, etc.) of a morpho-
type of Bacillus subtilis using control parameters, such
as the concentration of agar and peptone, which was the
source of nutrient. Under standard (favorable) conditions
bacterium colonies do not exhibit a high level of organiza-
tion. However, under certain hostile environmental con-
ditions (like limited nutrient source or hard agar surface)
the complexity of the colony as a whole increases, charac-
terized by the appearance of cell-differentiation and long-
range information transmission (Shapiro, 1988). For de-
scribing the observed hydrodynamics (vortex-formation,
migration of clusters) of the bacteria in an intermediate
level, Czirók et al. (1996) proposed a simpler model of
self-propelled particles, and more complex ones – taking
into account further biological details – to capture the
more elaborated collective behaviors, like the vortex and
colony formation (see Sec. V.A.3). Figure 8 depicts a
typical bacterium colony formed by the vortex morpho-
type.

This kind of bacterium, Bacillus subtilis, when the cells
are very concentrated (nearly close-packed), form a spe-
cial kind of collective phase called “Zooming BioNemat-
ics” (ZBN) (Cisneros et al., 2007). This phase is charac-
terized by large scale orientational coherence – analogous
to the molecular alignment of nematic liquid crystals –
in which the cells assemble together into co-directionally
swimming clusters, which often move at speeds larger
then the average speed of single bacteria. Figure 9 shows
a snapshot of swimming Bacillus subtilis cells exhibiting
collective dynamics, and Fig. 10 depicts the correspond-
ing vorticity field.

The collective behavior of motile aerobic bacteria
(“aerobic” are those bacteria which need the presence
of oxygen for their survival), primarily in high cell-
concentration, is governed by the interplay between buoy-
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FIG. 8 (Color online) A typical colony of the vortex morpo-
type of Bacillus subtilis. The black discs contain thousands
of bacteria circling together as the discs themselves glide out-
ward on the surface during colony growth. Courtesy of E.
Ben-Jacob.

FIG. 9 Swimming Bacillus subtilis cells exhibiting collective
dynamics. On a large scale, response to chemical gradients
(oxygen, in this case) can initiate behavior that results in
striking hydrodynamic flows. From Cisneros et al. (2007).

ancy, oxygen consumption, mixing and hydrodynamic
interactions. The patter-formation of these bacteria is
often governed by another physical mechanism as well,
called bioconvection (Pedley and Kessler, 1992), which
appears on fluid medium having a surface open to the
air. The authors argued that the patterns appear because
bacteria, which are denser than the fluid they swim in,
gather at the surface creating a heavy layer on the top of
a lighter medium. When the density of the bacteria-cells
exceed a certain threshold, this arrangement becomes un-
stable resulting in a large-scale cell circulation (or con-
vection).

Sokolov et al. (2009) have investigated the onset of
large-scale collective motion of aerobic bacteria swim-
ming in a thin fluid, a ‘film’, which had adjustable
thickness. They have demonstrated the existence of a
clear transition between a quasi-two-dimensional collec-
tive motion state and a three-dimensional turbulent state

FIG. 10 (Color) A snapshot of the vorticity field of the swim-
ming bacteria Bacillus subtilis (depicted on Fig. 9). The
small arrows indicate the corresponding velocity field. The
color bar indicates vorticity in seconds−1. The turbulent
motion of the suspension is well-observable. The regions of
aligned motility are hundreds of times larger than the size of
the bacteria, remaining coherent for the order of magnitude
of a second. From Cisneros et al. (2007).

that occurs at a certain fluid-thickness. In the turbulent
state – which is qualitatively different from bioconvection
– an enhanced diffusivity of bacteria and oxygen can be
observed, which – supposedly – serves the better survival
of bacteria colonies under harsh conditions.

In another remarkable recent paper, while seeking to
understand how certain bacteria colonies are able to
spread so efficiently, Wu et al. (2009) reported on a
completely unexpected phenomenon: they found that
members of a certain kind of bacteria (Myxococcus xan-
thus) regularly reverse their direction, heading back to
the colony which they have just came from, which is –
seemingly – only a waste of time and energy. Motivated
by these observations, the authors constructed a detailed
computational model that took into account both the be-
havior and the cell biology of the bacteria M. xanthus.
The model revealed that these reversals generate a more
orderly swarm with more cells oriented in parallel, mak-
ing the cells less likely to collide with each other. With-
out these turn-backs the cells would become disordered
and as a whole, would move at a slower rate while fi-
nally coming to a standstill. The model predicts that
the swarm expands at the greatest rate when cells re-
verse their direction approximately every eight minutes
– which is in exact match with the observations. Figure
11 shows a snapshot of the expanding colony of bacteria
M. xanthus.

Wild-type (“normal”)Myxococcus xanthus has two dif-
ferent kinds of engines to move itself: a pilus at its’ front
end which pulls the cell, and a slime secretion engine at
its’ rear that pushes the bacterium forward. Wu et al.
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FIG. 11 The edge of the expanding colony of bacteria M. xan-
thus. Some individual cells and slime traits are labeled, along
with some multicellular “rafts” and mounds. The colony is
expanding in the radial direction, which is to the right in this
image. From Wu et al. (2009).

FIG. 12 The colony of Bacillus subtilis which – similarly to
P. mirabilis – grow in a peculiar concentric ring-like pattern,
which is the result of a special swarming cycle reported by
Czirók et al. (2001) and Yamazaki et al. (2005). From Ya-
mazaki et al. (2005).

(2007) have investigated the coordinated motion and so-
cial interactions of this bacteria by using mutants: bac-
teria that were void of either one or the other type of en-
gine. Based on their observations they have introduced
a cell-based model to study the role of the two differ-
ent kinds of engines and to show how the interactions
between neighboring cells facilitate swarming.

Czirók et al. (2001) reported on swarming cycles (ex-
hibited by many bacterial species) resulting in a colony
with concentric rings (see Fig. 12). (Although the phe-
nomenon had been known for some time, in their study
both the quantitative measurements and the theoretical
interpretation have been the subject of research.) These
zones develop as the bacteria (Proteus mirabilis in their

experiments) multiply and swarm following a periodically
repeating scenario: when the bacteria cells are applied
to the surface of a suitable hard agar medium, they grow
as short, immotile “vegetative” rods. Then, after a cer-
tain time, cells start to differentiate at the colony mar-
gin into long motile “swarmer” cells which then migrate
rapidly away from the colony until they stop and revert
by a series of cell fissions into the vegetative cell form
again. These cells then grow normally for a time, until
the swarmer cell differentiation is initiated in the outer-
most zone again, and the process continues in periodic
cycles resulting into the concentric ring-structure. For
this process – every step of which has been observed
and described in detail – a model has been developed
as well, which is in excellent agreement with the obser-
vations. Yamazaki et al. (2005) investigated the above
described periodic change between the motile and the
immotile cell states experimentally, and they concluded
that the change between the two states was determined
neither by biological nor by chemical factors, but by the
local cell density.

Many papers deal with the effects of cell-density on the
collective behavior of a bacterium colony. Dombrowski
et al. (2004) artificially created regions in which a given
type of bacteria-cells are strongly concentrated. In these
regions the authors found striking collective effects with
transient, reconstituting, high-speed jets straddled by
vortexes, and suggested a corresponding modification for
the Keller-Segel model which takes into account the hy-
drodynamic interactions as well. (The Keller-Segel model
is probably the most prevalent model for chemical control
of cell movements, which has been originally introduced
by Keller and Segel (1971).) The relevance of the hydro-
dynamic effects was highlighted by Sokolov et al. (2007)
as well, who presented experimental results on collective
bacterial swimming in thin, two-dimensional fluid films
by introducing a novel technique that made it possible to
keep bacterium-cells in condensed populations exhibiting
adjustable concentration.

Zhang et al. (2009) related the characteristic velocity,
time and length scales of the collective motion of a given
type of swarming bacteria colonies.

The effects of the biomechanical interactions (arising
from the growth and division of the bacteria cells) on
the colony formation – although being ubiquitous – have
received little attention so far. In a recent paper Volf-
son et al. (2008) addressed this issue by observing and
simulating the structure and dynamics of a growing two-
dimensional colony of non-motile bacteria, Escherichia
coli. They found that growth and division in a dense
colony led to a dynamic transition from a disordered
phase to a highly ordered one, characterized by orien-
tational alignment of the rod-shaped cells (see Fig. 13).
The authors highlighted, that this mechanism differed
fundamentally from the one arranging the particles of
liquid crystals, polymers or vibrated rods, since this lat-
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FIG. 13 (Color online) The growth and ordering of the bacte-
ria E. coli in a quasi 2D open microfluidic cavity. Originally,
at the beginning of the test, the cells are distributed evenly
and sparsely. The three snapshots are taken at (a) 60, (b) 90
and (c) 138 minutes from the beginning of the experiment,
respectively. Growth and division in a dense colony leads
to a dynamic transition from a disordered phase to a highly
ordered one, characterized by orientational alignment of the
rod-shaped cells. Adapted from Volfson et al. (2008).

ter one was due to the combination of fluctuation and
steric exclusion.

Using the same bacteria, Tokita et al. (2009) stud-
ied the morphological diversity of bacterial colonies, as
a function of the agar and nutrient concentration. Var-
ious colony patterns were observed, classified into four
basic types after their pattern characteristics.

C. Cells

The basic observations and experiments regarding uni-
cellular organisms (which are also: cells) have been dis-
cussed in the previous section (II.B) since many kinds
of bacteria-stems proved to be good subject for various
experiments. However, some interesting experiment re-
garding the collective motion of unicellular beings, have
not been made on bacteria, but other kind of cells.

Here we mention only one experiment which, for de-
scribing the dynamics of the cells Dictyostelium dis-
coideum (commonly referred to as slime mold) took into
account their shape and plasticity as well. Based on the
observations regarding how these amoeba-cells aggregate
into rotating “pancake”-form structures, Rappel et al.
(1999) built a model of the dynamics of self-propelled
deformable objects (see also in Sec. V.A.2). According
to the experiments, these cells liked to form round struc-

tures which rotated around the center clockwise or an-
ticlockwise (depending on some initial conditions) often
persisting for tens of hours.

Next we discuss the collective motion of cells in highly
structured, multi-cellular organisms, in which cell mi-
gration plays a major role in both embryonic develop-
ment (e.g. gastrulation, neural crest migration) and the
normal physiological or patho-physiological responses of
adults (e.g. wound healing, immune response or cancer
metastasis). In these organisms, different strategies exist
for cell movement, including both individual cell migra-
tion and the coordinated movement of groups of cells
(Rorth, 2007). Figure 14 summarizes the basic types of
collective cell migrations with respect to the strength of
the contact among the cells moving together.

i) Groups can be associated loosely with occasional
contact and much of the apparent cohesion might come
from essentially solitary cells following the same tracks
and cues. Examples are germ cells in many organisms;
the rostral migratory stream supplying neurons to the ol-
factory bulb (RMS) and neural crest (NC) cells migrating
from the developing neural tube to many distant loca-
tions in the embryos of mammals; sperm cells. Although
the collective motion of these cells are often guided by
chemical signals, in some cases they can also form pat-
terns based on mere hydrodynamic effects (Riedel et al.,
2005).

ii) Other migrating groups are more tightly associated
and the cells normally never dissociate. Examples are
the fish lateral line, structures performing branching and
sprouting morphogenesis such as trachea or the vascula-
ture and finally moving sheets of cells in morphogenesis or
wound healing. These groups have an additional feature,
in that the moving structure has an inherent polarity, a
free ’front’ and an attached ’back’.

iii) Drosophila border cells are a group or cluster of
cells performing a directional movement during oogene-
sis. These migrating cells are associated tightly but the
cluster is free, without an inherent ’back’. A particu-
larly nice visualization of the collectively moving cells
during the development of zebra fish (by three dimen-
sional tracing of live-stained cell nuclei) very well demon-
strates the relevance of collective motion during morpho-
genesis (Schoetz, 2008). Zamir et al. (2006) have de-
veloped a technique in order to distinguish individual,
cell-autonomous displacements from convective displace-
ments caused by large-scale morphogenetic tissue move-
ments. Using this methodology, they have separated the
active and passive components of cell displacement di-
rectly, during the gastrulation process in a warm-blooded
embryo. Czirók et al. (2008) provided an excellent review
on cell-movements and tissue-formation during vasculo-
genesis in warm blooded vertebrates. As the key mecha-
nism for this process, the authors identified the formation
and rapid expansion of multicellular sprouts, by which
the originally disconnected endothelial cell clusters join
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FIG. 14 (Color online) The basic types of collective cell mi-
grations with respect to the strength of the contact among
the cells moving together. The schematic draw of the cells
are white with gray circles within them, which are the nuclei.
The dark lines on (a) and (c) are migration-permissive tracks
in the substrate. The movement is from left to right. (a)
and (b) depicts loosely associated cells which contact rarely
(a) or more frequently (b). Although these kind of motions
are sometimes restricted by tracks, the cells mostly contact
the substrate with a high degree of freedom. Neural-crest
cells and germ-line cells belong to these categories. The cell-
structure depicted in (c) has a well-defined front and back
part. Example is the neuromast cells of the fish lateral line.
(d) shows an example of tracheal or vascular-type branch out-
growth, during which the cells remain associated through the
the central bud growing out from the existing epithelium cells.
(e) shows an epithelial sheet moving to close a gap. These
cells most probably have only a small degree of freedom. (f)
A border-cell-cluster moves among giant nurse cells which are
depicted by the surrounding squares. From Rorth (2007).

and form an interconnected network.

A quantitative analysis of the experimentally obtained
collective motion and the associated ordering transition
of co-moving fish keratocites was carried out by Szabó
et al. (2006). They have determined the phase transition
as a function of the cell density and, motivated by their
experimental results, have constructed the corresponding
model as well (see Sec. V.A.2). Figure 15 shows the
typical collective behavior of the keratocite cells for three
different densities.

Further interesting examples for the collective motion
of tissue cells are related to the following two processes:

Tissue repair and wound healing. In tissue repair col-
lective migration is seen in vascular sprouts penetrat-
ing the wound or the horizontal migration of epithelial
cell-sheets across 2d substrates upon self-renewal of ker-
atinocytes migrating across the wound (Friedl, 2004).
In epithelial tissue, the opening of a gap induces the
proliferation and movement of the surrounding intact

FIG. 15 Phase contrast images showing the collective behav-
ior of fish keratocites for three different densities. (a) 1.8, (b)
5.3 and (c) 14.7 cells/100× 100µm2. The scale bar indicates
200µm. As cell density increases cell motility undergoes to
collective ordering. The speed of coherently moving cells is
smaller than that of solitary cells. (d)-(f) on the bottom panel
depicts the corresponding velocities of the cells. From Szabó
et al. (2006).

cells, which eventually closes the gap. Környei et al.
(2000) studied the responses of artificially mechanically
injured astrocytes (a characteristic star-shaped glial cell
in the central nervous system) in vitro. In particular,
the changes in the cell-motility, proliferation and mor-
phology were analyzed. Their data suggested that the
mechanical injury (basically a “scratch”) was not suffi-
cient to indicate changes in the motility of the astroglia
cell, but did result in a local enhancement in the cell pro-
liferation. In a recent paper Trepat et al. (2009) argued
that traction-forces driving collective cell migration did
not arise only (or primarily) in the “leader cells” which
were at the front of the traveling cell-sheet (Friedl, 2004;
Gov, 2007; Vaughan and Trinkaus, 1966), but, as it can
be seen on on Fig. 16, in many cell-rows behind the lead-
ing front-edge cells as well. Although – like some kind
of “tag of war” – the cell-sheet as a whole moved in one
direction, many cells within the cluster pulled the sheet
in other directions .

Cancer metastasis. Two morphological and functional
variants of collective migration have been described in tu-
mors in vivo. The first results from protruding sheets and
strands that maintain contact with the primary site, yet
generate local invasion. The second shows detached cell
clusters or cell files, histologically seen as ’nests’, which
detach from their origin and frequently extend along in-
terstitial tissue gaps and paths of least resistance, as seen
in epithelial cancer and melanoma (Friedl, 2004). Collec-
tive migration represents the predominant mode of tissue
invasion in most epithelial cancers.

Furthermore, recently it has been argued, that malig-
nant tumor cells may be capable of developing collective
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FIG. 16 (Color) Traction forces generated by a sheet of col-
lectively moving cells. (a) is the phase contrast image and
(b) depicts the tractions normal to the edge. Adapted from
Trepat et al. (2009).

patterns that resemble to evolved adaptive behaviors like
collective decision-making or collective sensing of the en-
vironmental conditions. Deisboeck and Couzin (2009)
presented a concept as to how these abilities could arise
in tumors and why the emergence of such sophisticated
swarm-like behavior would endow advantageous proper-
ties to the spatio-temporal expansion of tumors.

D. Insects

Many insect-species exhibit remarkable collective mo-
tion. Furthermore, social insects (like termites, ants and
several bees) exhibit various kinds of social and spatial
organizations as well, but those ones which are character-
ized by other sophisticated principles (for example pro-
duction of members with different roles carrying out spe-
cialized tasks) are beyond the scope of the present paper.
Readers interested in this topic can find more informa-
tion for example in (Holldobler andWilson, 2008; Wilson,
1971).
Many species of butterflies (e.g. Red Admiral, Painted

Lady) and moths (Humming-bird Hawk-moth, Silver-Y
moth) migrate twice a year between the two hemispheres:
when it is autumn on the Northern hemisphere they form
huge “clouds” and fly to south and come back only when
spring arrives. Other insects being famous of exhibiting
collective motion are ants. Many of them create tracks
between the nest and the food sources very efficiently,
using pheromone trails. For example New World army
ant Eciton Burvhelli – whose colonies may consist of mil-
lion or more workers – stage huge swarm raids with up
to 200 thousand individuals forming trail systems that
are in length up to 100 m or even more, and 20 m wide
(Franks et al., 1991; Gotwald, 1995). Based on the ob-
servations Couzin and Franks (2003) have investigated
the formation of these elaborated traffic lanes, and cre-
ated a corresponding model exploring the influences of
turning rates and local perception on traffic flow. Fur-
thermore, Beekman et al. (2001) have investigated an-
other fundamental question regarding these formations,

FIG. 17 The alignment of the motion of locusts in the func-
tion of animal density. The alignment is defined as the nor-
malized average of the orientation for all moving animals,
which means that values close to -1 and 1 indicate strong
alignment (all locusts move in the same direction) whereas
values close to zero indicate uncoordinated motion. At low
densities (a), the alignment among individuals - if occurs - is
sparse and sporadic, following a long initial period of disor-
dered motion (5.3–17.2 locusts/m2, equating to 2–7 moving
locusts). (b) Intermediate densities (24.6–61.5 locusts/m2,
equating to 10–25 moving locusts) are characterized by sharp
and abrupt changes in direction, separating long periods of
correlated motion. (c) At densities above 73.8 locusts/m2

(equating to 30 or more moving locusts) the alignment of
the motion is strong and persistent, individual locusts quickly
adopt their motion to the others, and spontaneous changes in
the direction do not occur. Adapted from Buhl et al. (2006).

namely what is the minimum number of workers that
are required for this kind of self organization to occur.
They have observed Pharaoh ants and they actually dis-
covered that small groups forage in a disorganized way
while larger ones are organized. Thus – for the first time
– they have provided experimental evidence on a behav-
ioral first-order phase-transition exhibiting hysteresis be-
tween organized and disorganized states.

Traditionally, an aggregate is considered to be an evo-
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FIG. 18 Locust swarm. From Physorg.com

lutionarily advantageous state for its’ members: it pro-
vides protection, information and choice of mates on the
cost of limited resources and increased probability for
various infections (Wilson, 1975a). However, according
to some recent studies, in the case of some insect-species
the depletion of nutritional resources may easily lead
to cannibalism among group-members. Simpson et al.
(2006) reported how the local availability of protein and
salt influenced the extent to which Mormon cricket bands
marched, both through the direct effect of nutrient state
on locomotion and indirectly through the threat of canni-
balism by resource-deprived specimens. Similarly, Bazazi
et al. (2008) demonstrated that coordinated mass migra-
tion in juvenile desert locusts (see Fig. 18) was influ-
enced strongly by cannibalistic interactions: Individuals
in marching bands tended to bite each other but risk be-
ing bitten themselves. Surgical reduction of individuals’
capacity to detect the approach of others from behind
decreased their probability to start moving, dramatically
reduced the mean proportion of moving individuals in the
group and significantly increased cannibalism as well, but
it did not influence the behavior of isolated locusts. They
also showed, that while abdominal biting and the sight
of others approaching from behind triggered movement,
the occlusion of the rear visual field inhibited individuals’
propensity to march.

Other characteristics of the collective motion of locusts
have also been studied: Yates et al. (2009) investigated
the sudden coherent switches in direction, and Buhl et al.
(2006) their behavior with respect to the effect of the
animal-density on the transition between disordered and
ordered states. The experimental results are depicted on
Fig. 17, which shows the alignment of the motion in
the function of locust density, for three different cases:
(a) low density, (b) intermediate density and (c) high
density. As it can be seen, coordinated marching behav-
ior strongly depends on the animal-density. With these
experiments they also confirmed that the transition fol-

lowed the theoretical predictions of the SPP-model (Vic-
sek et al., 1995), and identified the critical density for the
onset of coordinated marching as well.

Although zooplanktons are not insects, here we briefly
mention an interesting study in which Daphnia-swarms
were artificially induced to carry out vortex motion by
using vertical shaft of light, to which Daphnia are at-
tracted. When the density of these tiny animals were un-
der a certain threshold they exhibited a circular motion
around the optical stimulus, whereas above this density-
threshold they formed whirling swarms (Ordemann et al.,
2003). The authors suggested a corresponding model as
well.

E. Fish schools and shoals

The largest groups of vertebrates exhibiting a rich set
of collective motion patterns are certainly fish shoals and
schools. Although these two terms cover very similar
behaviors – and thus are often mixed – their meaning
slightly differs: in a shoal fish relate to each other in a
more loose way than in a school, and they might include
fish of various species as well (Pitcher, 1983). Shoals
are more vulnerable to predator attack. In contrast,
in a school fish swim in a more tightly organized way
considering their speed and direction, thus a school can
be considered as a special case of shoal (Helfman et al.,
1997). At the same time, from one second to the other
a shoal can organize itself into a disciplined school and
vice versa, according to the changes in the momentary
activity: avoiding a predator, resting, feeding or travel-
ing (Hoare et al., 2004; Moyle and Cech, 2003).

Schooling is a very basic feature of aquatic species and
may have appeared in a very early stage of vertebrate
evolution (Shaw, 1978). Over 50 percent of bony fish
species school and the same behavior has been reported in
a number of cartilaginous fish species as well (Benoit-Bird
and Au, 2003; Shaw, 1978). Since the large scale coherent
motion of fish is also very important from the practical
point of view (fishing industry), the observational and
simulational aspects of fish schools have played a central
role in the studies of coherent motion.

Becco et al. (2006) recorded the trajectories of young
fish in a school (see Fig. 19). Both the individual and
the collective behavior were studied as a function of “fish-
density”, and a transition from disordered to correlated
motion was found. Using a novel technique called “Ocean
Acoustic Waveguide Remote Sensing”, OAWRS (Makris
et al., 2006), which enables instantaneous imaging and
continuous monitoring of oceanic fish shoals over tens
of thousands of square kilometers, Makris et al. (2009)
observed vast herring populations during spawning (see
Fig. 20). The team observed a rapid transition from
disordered to highly synchronized behavior at a critical
density, followed by an organized group migration (see
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FIG. 19 Becco et al. (2006) recorded the trajectories of young
Tilapia fish in a school. (a) The photo of a Tilapia together
with her offsprings. (b) The trajectory of 20 fish (equating
to 350 fish/m2) recorded for 41 seconds. (c) Same as the
previous one, but with 905 fish/m2. The bar scale on sub–
pictures (b) and (c) represents 1cm×5cm. From Becco et al.
(2006).

Fig. 21). Furthermore, in agreement with other studies
(see Sec. II.G), they also found that a small set of leaders
can significantly influence the actions of a much larger
group.
One of the most fundamental question regarding gre-

garious animals – thus fishes as well – is how the common
decision is reached: if they are to stay together, they
constantly have to face questions like: which direction
to swim, where to stop and forage, how to guard against
predators, etc. Is it governed by a leader or by some kind
of consensus? (Biro et al., 2006; Reebs, 2000; Sumpter
et al., 2008) How does the size of the school influence
decision making? (Grunbaum, 1998)
Regarding the connotation of “consensus decision”,

most scholars follow the definition proposed by Conradt
and Roper (2005), who interpreted it as the process in
which ‘the members of a group chose between two or
more mutually exclusive actions with the aim of reach-
ing a consensus’, and “leadership” was ‘the initiation of
new directions of locomotion by one or more individuals,
which were then readily followed by other group mem-
bers’ (Krause et al., 2000).
In a recent experiment Ward et al. (2008) discovered

that individual fish responded only when they saw a
threshold number of conspecifics to perform a particu-
lar behavior (“quorum responses”). They experimentally
investigated (and also modeled) the decision making pro-

FIG. 20 (Color) OAWRS snapshots showing the formation of
vast herring shoals consisting of millions of Atlantic herring
on the northern flank of Georges Bank (situated between the
USA and Canada) on 3 October 2006. Adapted from Makris
et al. (2009).

cess about movements of a school in the case of a specific
kind of fish. Reebs (2000) trained twelve golden shiners
to expect food around midday in one of the brightly lit
corners of their tank and investigated whether these in-
formed individuals were able to lead their shoal-mates to
the site of the food source later or not. He has indeed
found that a minority of informed individuals (even one)
can lead a shoal to the food-site. He also observed that
the shoals never split up and were always led by the same
fish.

Some of the experiments suggesting these results uti-
lized “replica fish” or fish robots in order to study the
decision-making behavior (Faria et al., 2010a; Sumpter
et al., 2008)

F. Bird flocks

Flocking of birds has been the subject of speculations
and investigations for many years. Some of the nearly
paradoxical aspects of the extremely highly coordinated
motion patterns were pointed out already in the mid
1980-es (Potts, 1984). In this paper Potts discussed
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FIG. 21 (Color online) The results obtained from evaluating
the data recorded by the technique called “Ocean Acoustic
Waveguide Remote Sensing” (OAWRS), see Fig. 20. (a) The
length of the three forming shoals (on the left, depicted by
red, blue and black colors online) and the migration distance
(bottom of the picture, green online) in the function of time.
The solid lines are the best-fit slopes to the recorded data.
(b) and (c) population density versus time for shoal 1 (blue
data online) and shoal 2 (red data online). A slow growth in
population density is followed by a rapid increase, immedi-
ately after the critical fish-density is reached (0.18fish/m2).
Adapted from Makris et al. (2009).

how the flock movements were initiated and coordinated,
through a frame-by-frame analysis of high-speed film of
sandpiper flocks. He argued that any individual can initi-
ate a flock movement, which then propagates through the
flock in a wave-like form radiating out from the initiation
site.

Research investigated various features of the group
flight of birds, including positional effects on vigilance
(mainly anti-predatory) (Beauchamp, 2003; Elgar, 1989),
flock size, positional effects and intra-specific aggression
in European starlings (Keys and Dugatkin, 1990), land-
ing mechanisms (Bhattacharya and Vicsek, 2010). Skeins
of wild geese are famous for their characteristic V-shaped
formations, which was spatio-temporally analyzed by
Hayakawa (2010). By performing field measures, he ob-
served long-term fluctuations with single-sided propaga-
tion through the string, and proposed a corresponding
model as well. Parrish and Hamner (1997) published a
remarkable collection of papers about the state of the
art of the research on animal congregations in three di-
mensions. The most recent and impressive experimental
observational study was carried out within the frame-
work of a EU FP6 NEST project (Starflag, 2005-07).
In this project the team measured the 3D positions of
individual birds (European Starlings, Sturnus vulgaris)
within flocks containing up to 2,600 individuals, using
stereometric and computer vision techniques (see Fig.
22). They characterized the structure of the flock by
the spatial distribution of the nearest neighbors of each
bird. Given a reference bird, they measured the angu-
lar orientation of its nearest neighbor with respect to the
flock’s direction of motion, and repeated this process for
all individuals within a flock as reference bird. Figure 23
depicts the average angular position of the nearest neigh-
bors. The important main observation of the research
team in Rome was that starlings in huge flocks interact
with their 6-7 closest neighbors instead of those being
within a given distance. Thus, they argued, the effect of
density was quantitatively different in these (and proba-
bly most) flocks from that one would expect from models
assuming a spatially limited interaction range (Ballerini
et al., 2008).

On the other hand, other experiments – concerning
various other species – rendered the opposite version also
probable, namely that the range of interaction did not
change with density (Buhl et al., 2006). This question is
still the subject of investigations, and it may easily lead
to the conclusion that this mechanism differs from species
to species. An other, not yet investigated possibility is
that the qualitative nature of the global behavior is not
effected by this difference of the local interactions.

Cavagna et al. (2010) obtained high resolution spatial
data of thousands of starlings using stereo imaging in or-
der to calculate the response of a large flock to external
perturbation. They were aiming at understanding the
origin of collective response, namely the way the group
as a whole reacts to its environment. The authors ar-
gued that collective response in animal groups may be
achieved through scale-free behavioral correlations. This
suggestion was based on measuring to what extent the
velocity fluctuations of different birds are correlated to
each other. They found that behavioral correlations are
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FIG. 22 (Color online) A typical starling flock and its 3D
reconstruction. (a) and (b) is the photograph of one of the
analyzed flocks. The pictures have been made at the same
moment by two different cameras being 25 m far from each
other. For reconstructing the flocks in 3D, each bird’s image
on the left photograph had to be matched to its corresponding
image on the right photo. The small red squares indicate
five of these matched pairs. (c-f) The 3D reconstructions of
the analyzed flock from four different perspectives. (d) The
reconstructed flock from the same view-point as (b). From
Ballerini et al. (2008).

FIG. 23 (Color online) The average angular density of the
birds’ nearest neighbors. The map shows a striking lack of
nearest neighbors along the direction of motion, thus the
structure is strongly anisotropic. (A possible explanation for
this phenomenon might lie in the anatomical structure of this
genera’s visual apparatus.) According to the authors, the ob-
served anisotropy is the effect of the interaction among the
individuals. Adapted from Ballerini et al. (2008).

FIG. 24 (Color online) A highly pre-trained homing pigeon
with a small GPS device on his back. A recent technology to
obtain information about the position of the individual birds.
From Nagy et al. (2010).

scale free providing each animal with an effective percep-
tion range much larger than the direct interindividual in-
teraction range. Such a scale free behavior is commonly
observed for systems being at their critical state.

A very recent direction (made possible by technological
advances) is to obtain information about the position of
the individual birds during the observations using ultra
light GPS devices (see Fig. 24). Although the present
technology is still not suitable for large scale, high preci-
sion studies (only a couple of birds per experiment and a
resolution of the order of meters have been achieved yet),
this method has already called to forth important results
(Ákos et al., 2008; Roberts et al., 2004).

Applying GPS data-loggers in six highly pre-trained
pigeons, the efficiency of a flock was investigated by
Dell’Ariccia et al. (2008). They found that the hom-
ing performance of the birds flying as a flock was signifi-
cantly better than that of the birds released individually.
Employing high-precision GPS tracking of pairs of pi-
geons Biro et al. (2006) found that if conflict between
two birds’ directional preferences was small, individuals
averaged their routes, whereas if conflict rose over a crit-
ical threshold, either the pair split or one of the birds
became the leader.

Using similar method, track-logs obtained from high-
precision lightweight GPS devices, Nagy et al. (2010)
found a well-defined hierarchy among pigeons belonging
to the same flock by analyzing data concerning leading
roles in pairwise interactions (see Fig. 25). They showed
that the average spatial position of a pigeon within the
flock strongly correlates with its place in the hierarchy.

One of the long standing questions about the collec-
tive behavior of organisms is the measurement and inter-
pretation of their positions relative to each other during
flocking. Precise data of this sort would make the recon-
struction of the rules of interaction between the individ-
ual organisms possible. In a very recent paper Lukeman
et al. (2010) carried out an investigation with this specific
goal. They analysed a high-quality dataset of flocking
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FIG. 25 (Color online) The route of a flight and the corre-
sponding leadership-network of a pigeon flock. (a) A two-
minute segment of the trajectory of ten pigeons recorded by
small GPS devices (as depicted on Fig. 24). The different
letters (and colors online) refer to the different individuals.
The small dots on the lines indicate 1 second, the triangles
indicate 5, and they point in the direction of the flight. (b)
The leadership-network for the flight depicted on sub-figure
(a). Each node (letter) represent a bird, among which the
directed edges point from the leader to the follower. The
numbers on the edges indicate the time delay (in seconds)
in the two birds’ motion. For those bird-pairs which are not
connected directly with each other with an edge, directional-
ity could not be resolved by means of the applied threshold.
Adapted from Nagy et al. (2010).

surf scoters, forming well spaced groups of hundreds of
individuals on the water surface. Lukeman et al. (2010)
were able to fit the data to zonal interaction models (see,
e.g., Couzin et al. (2002)) and characterize which individ-
ual interaction forces suffice to explain observed spatial
patterns. The main finding is that important features
of observed flocking surf scoters can be accounted for by
zonal models with specific, well-defined rules of interac-
tion.

G. Leadership in groups of mammals and crowds

Many insect, fish and bird species live in large groups
in which members are considered to be identical (from

FIG. 26 (Color online) A flock of surf scoter (M. perspicillata)
swiming on the water surface (A). The actual coordinates and
velocities after correction for perspective and drift currents
effects. After Lukeman et al. (2010).

the viewpoint of collective motion), unable the recog-
nize each other on the individual level (although not all,
(Nagy et al., 2010)). Such groups might reach a con-
sensus either without leader (by quorum response, mean
value, etc.) or with a leader, but even in this latter
case leadership is temporal since it is based on temporal
differences, such as pertinent information of food loca-
tion or differences in some inner states (hunger, spawn-
ing inducement, etc). As an important difference, most
mammals do have the capacity for individual recognition
enabling the emergence of hierarchical group structures.
Although the assumption that the dominant individuals
are at the same time the ones that lead the herd seems
quite plausible, in fact, recent biological studies reveal
that in many cases there is no direct relationship be-
tween dominancy and leadership. Most probably it is an
interaction among kinship, dominancy, inner state and
some outer conditions.

Zebras, like many other mammals, need significantly
more water and energy during the lactation period, than
they need otherwise. Fischhoff et al. (2007) investigated
the effect of two factors, identity and inner state, on lead-
ership in herds of zebras, Equus burchellii. “Identity”
covers both dominancy and kinship, while the inner state
was interpreted as the reproductive state (if the individ-
ual is in its lactation period or not). Zebra harems consist
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of tightly knit individuals in which females were observed
to have habitual roles (“personal differences”) in the ini-
tiation of group movements. The authors also found that
lactating females initiate movements more often than
non-lactating ones, thus lactation, as inner state, plays
an important role in leadership. Others find more direct
relationship to hierarchy. Sárová et al. (2010) recorded
the motion of a herd of 15 beef cows, Bos taurus, for a
three-week period using GPS devices. They found that
short-distance travels and foraging movements are not
lead by particular individual, instead, they are rather in-
fluenced in a graded manner, i.e., the higher an individual
was in the group hierarchy, the bigger influence it exerted
on the motion of the herd. According to the observations,
Rhesus macaques (Macaca mulatta) preferred to join re-
lated or high-ranking individuals too, whereas Tonkean
macaques (Macaca tonkeana) exhibited no specific order
at departure (Sueur and Petit, 2008). In a recent review
article Petit and Bon (2010) interpreted the process of
collective decision making (regarding group movements)
as a combination of two kinds of rules: ‘individual-based’
and ‘self-organized’. The first one covers the differences
of the (mostly inner) states of the animals, that is, dif-
ferences in social status, physiology, energetic state, etc.
The second one, self-organization, corresponds to the in-
teractions, simple responses among individuals.

Regarding the case when leadership emerges solely
from differences in the inner states of the group members
(those ones lead who have pertinent information), Couzin
et al. (2005) suggested a simple model to show how a few
informed individuals can lead a whole group. In this
model (which is detailed in Sec. V.D) group members do
not signal and do not know which of them (if any) has
information regarding the desired direction. This model
predicts that even if the portion of the informed individ-
uals within the group is very small, the group as a whole
can achieve great accuracy in its movement. In fact, the
larger the group size, the smaller the portion of informed
members are needed to lead the group. Dyer et al. (2008)
tested these predictions on human groups in which the
experimental subjects were näıve and they did not use
verbal communication or any other active signaling. The
experiments indeed supported the predictions. Other ex-
periments investigated the relationship between the spa-
tial position of informed individuals and the speed and
accuracy of the group motion (Dyer et al., 2009). The re-
sults proved to remain valid in larger crowds as well (100
and 200 people) which can have important implications
on plans aiming to guide human groups for example in
case of emergency.

Faria et al. (2010b) studied the effect of the knowledge
regarding the presence and identity of a leader in small
human groups, and also investigated those inadvertent
social cues by which group members might identify lead-
ers. With this object they conducted 3 treatments: in
the first one, participants did not know that there was

a leader, in the second treatment they were instructed
to follow the leader but they did not know who it was,
while in the third one they knew who the leader was.
The experiments took place in a circular area with 10m
diameter labeled by numbers from 1 to 16. These marks
were spaced equally around the perimeter, as shown in
Fig. 27. In all the trials, participants were instructed
(i) not to talk or to make any gesture (ii) to walk con-
tinuously, and (iii) to remain together as a group. Fur-
ther instructions were provided on a piece of paper: a
(randomly chosen) person was asked to move to a (ran-
domly chosen) target but stay with the group. She/he
was the “informed individual”, the “leader”. The rest
of the group was uninformed, whose instructions differed
from treatment to treatment: In the first one, they were
only asked to stay with the group. In the second treat-
ment they were told to follow the leader, but they did
not know who it was. In the third one, they were asked
to follow the leader whose identity was provided (by the
color if his/her sash). Although the accuracy of the group
movement significantly differed from treatment to treat-
ment, the leader always succeeded to guide the group to
the target. The least accurate group motions were mea-
sured during the first treatment, while the second and
third ones resulted group motions whose accuracy were
close to the possible maximum value. Three main fac-
tors were exposed as inadvertent social cues that might
help uninformed group members to identify the leader(s):
(i) time to start walking – informed individuals usually
started walking sooner, (ii) distance from the group cen-
ter – leaders were farther from the center than others,
and (iii) proportion of time spent following – informed
people spent significantly less time following.

Many authors study animal groups from the viewpoint
of a cost-benefit interpretation. They highlight that for
an individual, living in a group brings more benefit than
disadvantage, which is after all the ultimate reason for
group-formation. However, during reaching a consensus,
if individuals differ in state and experience – which is rea-
sonable to assume – then some individuals will have to
pay bigger “consensus costs” than others (which is the
coast that an individual pays by foregoing its optimal
behavior to defer to the common decision (King et al.,
2008)). Theoretical models estimate “democratic deci-
sions” less costly (in terms of average consensus cost)
than “despotic decisions” (Conradt and Roper, 2003)
which estimation is supported by a number of obser-
vations as well (Conradt and Roper, 2005). However,
many animal groups (including primates and humans)
often follow despotic decisions. Field experiments (for
example on wild baboons (King et al., 2008)) highlight
the role of social relationships and leader incentives in
such cases. From a more theoretical viewpoint, Conradt
and Roper (2010) discussed the cost/benefit ratio dur-
ing group movements, separately for timing and spatial
decisions.
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FIG. 27 (Color online) Orientations (arrows) and walking tra-
jectories (lines) of the eight participants during the second
treatment. The colors identify the participants. The leader –
marked by a ’*’ on subpicture (a) – was instructed to reach
the randomly selected target which is marked by a ’§’. (a)
depicts the situation at the beginning of the trial and (b) 25
s later. Adapted from Faria et al. (2010b).

H. Lessons from the observations

The main, commonly assumed advantages of flocking
are:

1. Defense against predators,

2. More efficient exploration for resources or hunting,

3. Improved decision making in larger groups (e.g.,
where to land)

In general, it can be argued that with the increasing size
of a group the process of decision making is likely to
become more efficient (Camazine et al., 2001; Conradt
and List, 2009; Krause et al., 2010). In addition, based
on the numerous observations the following hypotheses
can be made about the nature of the patterns of motion
arising:

1. Motion and a tendency to adopt the direction of
motion of the neighbors is the main reason for or-
dered motion,

2. Apparently the same, or very similar behaviors oc-
cur in systems of very different origin. This sug-
gests the possibility of the existence of universal
classes of collective motion patterns,

3. Boundary conditions may significantly affect the es-
sential features of flocking,

4. Collective decision making is usually made in a crit-
ical, turbulent state of the flocks.

III. DEFINITIONS AND TECHNIQUES FOR
COLLECTING AND EVALUATING DATA

Throughout this overview the notion of flocking is used
as a synonym of any kind of coherent motion of individ-
ual units. However, the notion of coherent motion needs
some further elaboration since, as it turns out, it can be
manifested in a number of specific ways. In any case, co-
herent or ordered motion is assumed to be a counterpart
of disordered, random motion. In the various models
of flocking it emerges through a kind of phase transi-
tion (from disorder to order) as a function of the rele-
vant parameter(s) of the models. To demonstrate more
clearly this aspect of collective motion the best approach
is to adopt a few related definitions motivated mainly
by statistical physics (the physics of many interacting
molecules).

In this section we overview the relevant physical quan-
tities used in the later chapters. Physicists and other
readers who are familiar with the basic concepts and laws
of statistical physics might skip this section. Before that,
however, we would like to point out that according to the
numerous related results obtained so far, there seems to
be a surprisingly close analogy between the fundamental
features of phase transitions in equilibrium systems and
the corresponding behavior in systems of self-propelled
particles.

A. Basic notions and expressions

In a general sense, phase transition is a process, dur-
ing which the elements of a system consisting of many
interacting particles collectively change their behavior as
a function of an external parameter. A well known exam-
ple is the freezing of a fluid when the temperature drops.
In this case the temperature is the external parameter.
Phase transitions are typical examples for collective phe-
nomena.

The level of order in a system is usually described by
a parameter called order parameter, which is 0 in one
phase (usually in the disordered), and non-zero in the
other. Its value characterizes the onset of order during
phase transition. In the case of collective motion the most
naturally (but not necessarily) chosen order parameter is
the average normalized velocity φ,

φ =
1

Nv0

∣∣∣∣∣
N∑
i=1

v⃗i

∣∣∣∣∣ , (1)
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where N is the total number of the units and v0 is the
average absolute velocity of the units in the system. If
the motion is disordered, the velocities of the individual
units point in random directions and average out to be a
small vector, while for ordered motion the velocities all
add up to a vector of absolute velocity close to Nv0 (thus
the order parameter for large N can vary from about zero
to about 1).

Phase transitions (in case of flocking systems as well)
can be of first order (or discontinuous), during which the
order parameter jumps from one value to another. In
contrast, during continuous (mostly second order) phase
transitions the change in the level of order is usually
sharp (e.g., very quickly increasing), but not discontin-
uous at the transition point. Second order phase tran-
sitions are always accompanied by large fluctuations of
some of the relevant quantities.

Phenomena associated with a continuous phase transi-
tion are often referred to as critical phenomena because
of their connection to a critical point at which the phase
transition occurs. (“Critical”, because here the system
is extremely sensitive to small changes or perturbations.)
Near to the critical point, the behavior of the quantities
describing the system (e.g., pressure, density, heat ca-
pacity, etc.) are characterized by the so called critical
exponents. For example the (isothermal) compressibility
κT of a liquid substance, near to its critical point, can be
expressed by

κT ∼ |T − Tc|−γ
, (2)

where T is the temperature, Tc is the critical tempera-
ture (at which the phase transition occurs), ∼ denotes
proportionality and γ is the critical exponent. In sys-
tems of self-propelled particles, noise (η) plays the role
of temperature (T ): an external parameter that endeav-
ors to destroy order. Correspondingly, the fluctuation of
the order parameter, σ2 =

⟨
φ2

⟩
− ⟨φ⟩2, is described as

σ ∼ |1− η/ηc|−γ
, (3)

where η is the noise, ηc is the critical noise that separates
the ordered and disordered phases, and γ is again the
’susceptibility’ critical exponent. By introducing χ =
σ2L2, where L is the linear size of the system, we get

χ ∼ (η − ηc)
−γ (4)

κT in Eq. (2) corresponds to χ in Eq. (4).

An other descriptive expressing the change in the den-
sity between the liquid and the gas phases, ρl−ρg, obeys
to

ρl − ρg ∼ (Tc − T )
β
, (5)

where β is the critical exponent. For systems of self-
propelled particles, when L → ∞, the corresponding
equation is

φ ∼
{

(1− η/ηc)
β

for η < ηc
0 for η > ηc

(6)

Regarding the relation between the order parameter φ
and the external bias field h (“wind”), φ scales as a func-
tion of h according to the power law

φ ∼ h1/δ (7)

for η > ηc, where δ is the relevant critical exponent.
Various similar expressions can be formulated involv-

ing further quantities as well as critical exponents. Inter-
estingly, very different physical systems exhibiting seem-
ingly different kind of phase transitions follow similar
laws. For example the magnetization M of a ferro-
magnetic material subject to a phase transition near to
a critical temperature called Curie point, obeys M ∼
(Tc − T )

β
.

Another surprising observation is that these critical
exponents are related to each other, that is, expressions
like α+2β+γ = 2 or δ = 1+ γ

β can be formulated, which
hold independently of the physical system the critical
exponents (α, β, γ, δ) belong to. Note, that this is a far
from trivial observation! For more details on this topic
see (Cardy, 1996; Isihara, 1971; Pathria, 1996), and for
further analogies and differences between ferromagnetic
models and systems of self propelled particles see (Czirók
et al., 1997).

Another phenomenon accompanying phase transitions
is the formation of clusters of units behaving (e.g., being
directed or moving) in the same way. Units which can
be reached through neighboring units belong to the same
cluster, where neighboring stands for a predefined prox-
imity criterion. Thus, the behavior of units in the same
cluster is usually highly correlated. In general, correla-
tion functions represent a very useful tool to characterize
the level of order in a system.

B. Correlation functions

Generally speaking, two series of data (X and Y ) are
correlated if there is some kind of relationship between
their elements. A correlation function measures the sim-
ilarity between the data-sequences, or, in the continu-
ous case, the similarity between two signals or functions.
Auto-correlation is the correlation of a signal with itself,
typically as a function of time. This is often used to re-
veal repeating patterns, such as the presence of a periodic
signal covered by noise. If the two signals compared are
different, we consider cross-correlation.

For example, let us consider two real-valued data-series
f1 and f2, which differ only by a shift in the element-
numbers, e.g., the 5th element in the first series is the
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same than the 12th in the second, the 6th corresponds
to the 13th, etc. In this case the shift is s = 7, that is,
the first series has to be shifted with 7 elements in order
to be congruous with the second one. The corresponding
(cross) correlation function will show a maximum at 7.
Formally, for discrete data-sequences f1 and f2, the

correlation function is defined as:

c(s) =

∞∑
n=−∞

f∗
1 [n] f2 [n+ s] , (8)

where ‘∗’ refers to the complex conjugate operation1.
Accordingly, in continuous case, when f1 and f2 are

continuous functions (or “signals”), the cross-correlation
function will reveal how much one of the functions must
be shifted (along the horizontal axis) to become congru-
ous with the other one. Formally,

c(τ) =

∫ ∞

n=−∞
f∗
1 (t)f2(t+ τ)dt (9)

Equation (9) shifts f2 along the horizontal axis (which
is in this example the time-axis), and calculates the
product at each time-step of the two functions. This
value is maximal when f1 and f2 are congruous, because
when lumps (positives areas) are aligned, they contribute
to making the integral larger, and similarly, when the
troughs (negative areas) align, they also make a positive
contribution to the expression, since the product of two
negative values is positive.
With this introduction we can now formulate some spe-

cific correlation functions that are often used in the field
of collective motion.
The velocity-velocity correlation function, cvv, is an

auto-correlation function that shows how closely the ve-
locity of a particle (unit, individual, etc.) at time t is
correlated with the velocity at a reference time. It is
defined as follows:

cvv(t) =
1

N

N∑
i=1

⟨v⃗i(t) · v⃗i(0)⟩
⟨v⃗i(0) · v⃗i(0)⟩

, (10)

where v⃗i(0) is the starting (reference) time and N is the
number of particles within the system and ⟨. . .⟩ denotes
taking an average over a set of starting times. The way
cvv(t) decays to zero shows how the velocities at later
times become independent of the initial ones.

1 A pair of complex numbers are said to be complex conjugates,
if their real part is the same, but their imaginary parts are of
opposite signs. For example, 2 + 3i and 2 − 3i are complex
conjugates. It also follows, that the complex conjugate of a real
number is itself.

FIG. 28 Radial distribution function for the so called
Lennard-Jones model. It describes how the unit density varies
as a function of the distance from one particular element in the
case of an interaction potential having both a shorter range,
strong repulsive and a longer range attractive part.

The pair correlation function, cp(r), (or radial distribu-
tion function, g(r)), depicted on Fig. 28, describes how
the unit density varies as a function of the distance from
one particular element. More precisely, if there is a unit
at the origin, and if n = N/V is the average number den-
sity (N is the number of units in a system with volume
V ), then the local density at distance r from the origin is
ng(r). It can be interpreted as a measure of local spatial
ordering. Equation 11 gives the exact formula.

cp(r) =
V

4πr2N2

⟨∑
i

∑
j ̸=i

δ(r − rij)

⟩
(11)

The directional correlation function,

cij(τ) = ⟨v⃗i(t) · v⃗j(t+ τ)⟩ , (12)

tells to what degree the velocity of the ith particle at time
t is correlated with that of particle j at time t+ τ . ⟨. . .⟩
denotes averaging over time, and v⃗i(t) is the normalized
velocity of the ith SPP. (Note that cij(τ) = cji(−τ).)
The directional correlation delay is primarily used to de-
termine the leader-follower relationship within a flock of
birds, fish, or more general, in a swarm of self-propelled
particles (SPPs), as illustrated on Fig. 29 (Nagy et al.,
2010). The directional correlation delay for a pair of
SPPs (i and j, where i, j = 1, 2, . . . , N and N is the
number of SPPs within the flock) is calculated according
to Eq. 12. Then the maximum value of the cij(τ) cor-
relation function is allocated, τ∗ij . Negative value means
that the direction of motion of the ith SPP is falling be-
hind that of the jth one, so this can be interpreted as
j is leading. The directional correlation function for an
SPP with respect to the rest of a given flock or swarm,
is ci(τ) = ⟨v⃗i(t) · v⃗j(t+ τ)⟩i,j .

Further useful correlation functions were suggested
in Cavagna et al. (2010) in order to characterize the
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FIG. 29 (Color online) Illustration for the directional corre-
lation function, which is a tool for determining the leader-
follower relationships within a flock or swarm. This example
shows the case of a bird-flock. (a) Determining the projected
distance dij(t) of birds i and j onto the direction of motion of
the whole flock at time step t. Bird i is light gray on the draw,
and bird j is dark. The v⃗j(t) arrows indicate the direction of
bird j at each time step t. The center of mass of the flock is
denoted with a cross, which moves with ⃗vflock(t), the aver-
age velocity of the flock. The relative position of the birds i
and j is projected onto ⃗vflock(t). The directional correlation
function for each i ̸= j pair is defined by Eq. (12). (b) Scalar
products v⃗i(t) · v⃗j(t+ τ) of the normalized velocity vectors of
bird i at time t, and that of bird j at time t + τ . On this
example bird j follows bird i with correlation time τ∗

ij . (c)
The directional correlation functions cij(τ) during the flock
flight depicted on Fig. 25. For better transparency only five
of the items are shown, the data belonging to birds A, M, G,
D and C. The solid symbols indicate the maximum value of
the correlation functions, which have been used to determine
the leader-follower network, depicted on 25 b. From Nagy
et al. (2010).

response of a flock to external perturbation.

C. Data collection techniques

Collective motion of cells has been followed by com-
puter controlled phase contrast video microscope sys-
tem (Czirók et al., 1998). Cell’s trajectories have been
recorded for several days to determine the velocities of
several cell types. Particle Image Velocimetry (PIV)
(Raffel et al., 2002) techniques have been used to evaluate
the velocity filed of thousands of swimming bacteria (Cis-
neros et al., 2007). Originally, PIV is an optical method
used to produce the two dimensional instantaneous veloc-
ity vector field of fluids, by seeding the media with ‘tracer
particles’. These particles are assumed to follow the flow
dynamics accurately, and it is their motion that is then
used to calculate velocity information. The movement
of vertebrate flocks has been tracked mainly by camera
based techniques. (Sinclair, 1977) used aerial photos to
investigate the individual’s spatial positions within graz-
ing African buffalo herds in two dimensions. Because of
the difficulties of analyzing three dimensional group mo-
tions, fish schools also have been studied in shallow wa-
ter. The camera in these studies followed the flock from
above (Becco et al., 2006). To reconstruct the three-
dimensional positions and orientations of the fish Cullen
et al. (1965) used the so called shadow method. With the
shadow method Partridge et al. (1980) were investigating
positioning behavior in fish groups of up to 30 individ-
uals. Three dimensional trajectories of fish group have
been recorded with three orthogonally positioned video
cameras by Parrish and Turchin (1997). Major and Dill.
(1978) applied the stereo photography technique first for
recording the three dimensional positions of birds within
flocks of European starlings and dunlins. Ballerini et al.
(2008) have recently reconstructed with high precision
the three-dimensional positions of hundreds of starlings
in airborne flocks with the same technique. The stereo
photography method allowed the detailed and accurate
analysis of nearest neighbor distances in large flocks, but
still did not make the trajectory reconstruction of the
individual flock members possible. Exploiting acoustic
waves, a new technology called “Acoustic Waveguide Re-
mote Sensing” makes the monitoring and imaging of vast
oceanic fish population possible, over tens of thousands
of square kilometers (Makris et al., 2009, 2006).

The development of GPS technology makes it possi-
ble to equip individual flock members with GPS device.
With this method the trajectory of flock members can be
collected with high temporal resolution in their natural
environment. The limits of this method at this moment
are on the one hand the growing cost of the research with
the growing number of tracked flock members, and on
the other hand the limited accuracy of the devices. GPS
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FIG. 30 (Color online) The three basic steering behaviors de-
termining the motion of the objects (called “boids”). (a) Sep-
aration, in order to avoid crowding local flock-mates. (Each
boid reacts only to flock-mates within a certain neighborhood
around itself, they are the “local flock-mates”.) (b) Align-
ment : objects steer towards the average heading direction
of their local flock-mates. (c) Cohesion: objects move to-
ward the average position of their neighboring boids. From
http://www.red3d.com/cwr/boids/.

logged flight tracks of homing pigeon pairs have been ana-
lyzed by Biro et al. (2006) and Nagy et al. (2010) to inves-
tigate hierarchical leadership relations inside the group.
Dell’Ariccia et al. (2008) also used the GPS method to
study the homing efficiency of a pigeon group consist of
6 birds.

IV. BASIC MODELS

A. Simplest self-propelled particles (SPP) models

Modeling of flocks has simultaneously been considered
by the – initially – relatively separated communities of
computer graphics specialists, biologists and physicists.
Perhaps the first widely known flocking simulation was
published by Reynolds (1987) who was mainly motivated
by the visual appearance of a few dozens of coherently
flying objects, among them imaginary birds and space-
ships. His bird-like objects, which he called “boids”,
were moving along trajectories determined by differen-
tial equations taking into account three types of inter-
actions: avoidance of collisions, heading in the direc-
tion of the neighbors and finally, trying to stay close to
the center of mass of the flock, as illustrated on Fig.
30. The model was deterministic and had a number
of relatively easily adjustable parameters. The website
http://www.red3d.com/cwr/boids/ created and main-
tained until 2001 by Reynolds is a unique source of links
to all sorts of information (programs, demos, articles, vi-
sualizations, essays, etc.) related to group motion.
In order to establish a quantitative interpretation of

the behavior of huge flocks in the presence of perturba-
tions, a statistical physics type of approach to flocking
was introduced in 1995 by Vicsek et al. (1995), which
nowadays is widely referred to as “Vicsek Model” (VM)
e.g., (Baglietto and Albano, 2008, 2009b; Chaté et al.,
2008a; Ginelli et al., 2010; Jadbabaie et al., 2003; Kulin-
skii and Chepizhko, 2009; ZhiXin and Lei, 2008). In
the present paper we will refer to this approach as the
“SVM”, corresponding to Standard Vicsek Model as sug-

gested in (Bertin et al., 2009; Huepe and Aldana, 2008).
In this model the perturbations, which are considered
to be a natural consequence of the many stochastic and
deterministic factors affecting the motion of the flocking
organisms, are taken into account by adding a random
angle to the average direction (Eq. 15). In this cellular-
automaton-like approach of self-propelled particles (SPP-
s) the units move with a fixed absolute velocity v0 and
assume the average direction of others within a given dis-
tance R. Thus, the equations of motion for the velocity
(v⃗i) and position (x⃗i) of particle i having neighbors la-
beled with j are

v⃗i(t+ 1) = v0
⟨v⃗j(t)⟩R∣∣⟨v⃗j(t)⟩R∣∣ + perturbation (13)

x⃗i(t+ 1) = x⃗i(t) + v⃗i(t+ 1) (14)

Here ⟨. . .⟩R denotes averaging (or summation) of the ve-
locities within a circle of radius R surrounding particle i.

The expression
⟨v⃗j(t)⟩R
|⟨v⃗j(t)⟩|R

provides a unit vector pointing

in the average direction of motion (characterized by its
angle ϑi(t) ) within this circle. It should be pointed out
that the processes accounted for by such an alignment
rule can be of very different origin (stickiness, hydrody-
namics, pre-programmed, information processing, etc).
Perturbations can be taken into account in various ways.
In the standard version they are represented by adding
a random angle to the angle corresponding to the aver-
age direction of motion in the neighborhood of particle
i. The angle of the direction of motion ϑi(t+ 1) at time

t+ 1, is obtained from ϑi(t) = arctan
[
<vj,x>R

<vj,y>R

]
, as

ϑi(t+ 1) = ϑi(t) + ∆i(t), (15)

where vj,x and vj,y are the x and y coordinates of the ve-
locity of the jth particle in the neighborhood of particle
i, and the perturbations are represented by ∆i(t) which
is a random number taken from a uniform distribution
in the interval [−ηπ, ηπ] (i.e., the final direction of par-
ticle i is obtained after rotating the average direction of
the neighbors with a random angle). The only parame-
ters of the model are the density ρ (number of particles
in a volume Rd, where d is the dimension), the velocity
v0 and the level of perturbations η < 1. For order pa-
rameter φ, the normalized average velocity is suitable,

φ ≡ 1
Nv0

∣∣∣∑N
i=1 v⃗i

∣∣∣, as defined by Eq. (1).

This extremely simple model allows the simulation of
many thousands of flocking particles and displays a sec-
ond order type phase transition from disordered to an
ordered (particles moving in parallel) state as the level
of perturbations is decreased (see Fig. 31). At the point
of the transition features of both order and disorder are
simultaneously present leading to flocks of all sizes (and
an algebraically decaying velocity correlation function).
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FIG. 31 Order parameter (φ) versus noise (η) in the SVM. (a)
The different kind of points belong to different system sizes.
(b) The different curves belong to different v0 velocities, with
which each particles move. As it can be seen, the concrete
value of v0 does not effect the nature of the transition (except
when v0 = 0, that is, when the units do not move at all). (a)
is adapted from Czirók et al. (1997) and (b) is from Baglietto
and Albano (2009a).

Shimoyama et al. (1996) proposed a mathematical
model (neglecting noise) from which they obtained a cat-
egorization of the different types of collective motion pat-
terns and determined the corresponding phase diagrams
as well.

1. The order of the phase transition

In the paper introducing the original variant (OVM)
of the SVM (Vicsek et al., 1995), a second order phase
transition from disordered to ordered motion was shown
to exist. In particular, in the thermodynamic limit, the
model was argued to exhibit a kinetic phase transition
analogous to the continuous ones in equilibrium systems,
that is,

φ ∼ [ηc(ρ)− η]
β

φ ∼ [ρ− ρc(η)]
δ

(16)

which defines the behavior of the order parameter at crit-
icality, in the case of a standard second order transition.
β and δ are critical exponents, η is the noise (in the form
of random perturbations), ρ is the particle density, and
ηc(ρ) and ρc(η) are the critical noise and critical den-

sity, respectively, for L → ∞. (L is the linear size of the
system.)

However, the continuous nature of this transition has
been questioned (Grégoire and Chaté, 2004) resulting in
a number of studies investigating this fundamental aspect
of collective motion. Chaté and coauthors (Chaté et al.,
2008b), in their extensive, follow up study presented nu-
merical results indicating that there exists a “crossover”
system size which they call L∗ beyond which the discon-
tinuous character of the transition appears independent
of the magnitude of the velocity. They claim that this
discontinuous character is the “true” asymptotic behav-
ior in the infinite-size limit. Importantly, Chaté et al.
(2008b) argued and presented results in favor of their
picture that L∗ diverges in various limits: both the low
and high density limits, as well as in the small velocity
limit. In particular, an extrapolation of their estimates
towards the small velocity regimes considered in prior
works, gives values of L∗ so large that do not make the
corresponding simulations feasible.

Further recent works presented results in support of
the original findings. It seems that in spite of its sim-
plicity, the SPP model proposed in 1995 exhibits an un-
usually rich behavior as a function of its few parameters.
In particular, according to the simulations for relatively
large velocities (v0 > 0.5), the transition is discontin-
uous, while Baglietto and Albano (2009a) showed that
for smaller velocities, even in the limit when the velocity
goes to zero (except when it is exactly equal to zero),
the transition to ordering is continuous (is independent
of the actual value of the velocity, as it can be seen in
Fig. 31 b). Very recently Ihle (2010) and Mishra et al.
(2010) were able to see band-like structures in their solu-
tions obtained from a hydrodynamic (continuum theory)
approach. Bands usually signal first order phase transi-
tion, however, Ihle (2010) found them for a large veloc-
ity case, while Mishra et al. (2010) assumed throughout
their calculation that the transition from disorder to or-
der was continuous. Aldana et al. (2007) addressed this
question by analyzing two network models that capture
some of the main aspects characterizing the interactions
in systems of self-propelled particles. They argued that
the type of the phase transition (whether it is first or
second order) depends on the way in which the noise is
introduced into the system.

In the so called “vectorial noise model” the perturba-
tion (in the form of a random vector) is first added to
the average of the velocities and only after this the fi-
nal direction is determined (Grégoire and Chaté, 2004).
When the average velocity is small (disordered motion)
this seemingly subtle difference in the definition of the
final direction leads to a qualitatively different ordering
mechanism (sudden – first order-type – transition to the
ordered state). Correspondingly, Aldana et al. (2009) an-
alyzed the order-disorder phase transitions driven by two
different kinds of noises: “intrinsic” (the original form,



24

perturbing the final angle) and “extrinsic” (the vecto-
rial one, perturbing the direction of the individual par-
ticles before averaging). Intrinsic is related to the deci-
sion mechanism through which the particles update their
positions, while extrinsic affects the signal that the par-
ticles receive from the environment. The first one calls
continuous phase transitions forth, whereas the second
type produces discontinuous phase transitions (Pimentel
et al., 2008). Finally, Nagy et al. (2007) argued that the
vectorial noise results in a behavior which can be associ-
ated with an instability.

2. Finite size scaling

So far, the most complete study regarding the scaling
behavior of systems of self-propelled particles exhibiting
simple alignment plus perturbation, has been carried out
by Baglietto and Albano (2008). They performed exten-
sive simulations of the SVM, and analyzed them both
by a finite-size scaling method (a method used to de-
termine the values of the critical exponents and of the
critical point by observing how the measured quantities
vary for different lattice sizes), and by a dynamic scaling
approach. They observed the transition to be contin-
uous. In addition they demonstrated the existence of
a complete set of critical exponents for the two dimen-
sional case (including those corresponding to finite size
scaling2) and numerically determined their values as well.
In particular, within the framework of finite-size scaling
theory, the scaling ansatz for the order parameter φ of
the SVM has been rewritten as

φ(η, L) = L−β/νφ̃((η − ηc)L
1/ν , (17)

where L is the finite size of the system, φ̃ is a suitable
scaling function, and finally, β and ν are two of the crit-
ical exponents in question: β is the one belonging to the
order parameter, and ν is the correlation length critical
exponent.
Similarly, the fluctuation of the order parameter, χ =

σ2L2, takes the form

χ(η, L) = Lγ/ν χ̃((η − ηc)L
1/ν), (18)

where χ̃ is a suitable scaling function, γ is the suscep-
tibility critical exponent, and σ2 ≡

⟨
φ2

⟩
− ⟨φ⟩2 is the

2 Numerical simulations carried out on systems having finite size
L in at least one space dimension exhibit so called finite size
effects, most importantly rounding and shifting effects during
second-order phase transitions. These artifacts are particularly
emphasized near the critical points, but they can be accounted
for by means of the so called finite-size scaling. See more on this
topic in (Brankov et al., 2000; Cardy, 1996).

variance of the order parameter. In the thermodynamic
limit, χ obeys χ ∼ (η − ηc)

−γ . (See also Eq. (4))
Equations (17) and (18) are convenient to determine

the critical exponents within the framework of finite size
scaling theory. As a crucial result, the authors found
that the exponents they calculated satisfy the so called
hyperscaling relationship

dν − 2β = γ (19)

which is, in general, valid for standard (equilibrium) crit-
ical phenomena. d denotes the dimension, d = 2.

The nature of “intermittency” – intermittent bursts
during which the order is temporarily lost in such sys-
tems – has also been a subject of investigations recently
(Huepe and Aldana, 2004).

B. Variants of the original SPP model

Several variants of the above introduced, simplest SPP
model have been proposed over the years. One of the
main directions comprises of those studies that investi-
gate systems in which the particles (units) do not follow
any kind of alignment rule, only collisions occur between
them in the presence of some kind of interaction poten-
tial. We shall overview this approach in Sec. IV.B.1.
Models assuming some kind of alignment rule for the
units, will be dealt with in Sec. IV.B.2.

1. Models without alignment rule

As mentioned in Sec. IV.A, in the most simple SPP
models, an alignment term is assumed. However, accord-
ing to very recent studies (see Sec. II.A), the motion of
particles may become ordered even if no explicit align-
ment rule is applied (Grossman et al., 2008). The sim-
plest (most minimal) model of ordered motion emerging
in a system of self-propelled particles looks like this: The
particles are trying to maintain a given absolute veloc-
ity and the only interaction between them is a repulsive
linear force (F⃗ ) within a short distance (i.e., they do not
“calculate” the average of the velocity of their neighbors,
and the only interaction is through a pair-wise central
force). The corresponding equations are:

dv⃗i
dt

= v⃗i

(
v0
|v⃗i|

− 1

)
+ F⃗i + ξ⃗i (20)

where ξ⃗i is noise (random perturbations, typically
white noise)

F⃗i =
∑
i̸=j

F⃗ij + F⃗i (wall) (21)
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FIG. 32 (Color online) Probability density distribution of
the order parameter versus noise for 1200 particles. The
first order nature of the transition is indicated by the be-
havior of the order parameter – depicted on the vertical axis
– which abruptly falls, in this case at noise level 0.007. From
http://hal.elte.hu/~vicsek/SPP-minimal/.

r⃗ij = x⃗i − x⃗j (22)

F⃗ij =

{
Cr⃗ij(

r0
|r⃗ij | − 1) ,if |r⃗ij | ≤ r0, and

0 ,otherwise
(23)

Simulations of the above minimal model result in a first
order transition from disordered to coherent collective
motion (Derzsi et al., 2009), as it can be seen in Fig. 32.
Analogous results were recently obtained for another

simple model assuming only a specific form of inelastic
collisions between the particles (Grossman et al., 2008).
In their numerical experiments, self-propelled isotropic
agents move and collide on a two-dimensional friction-
less flat surface. Imposing reflecting boundary-conditions
produce a number of collective phenomena: ordered mi-
gration, the formation of vortices (see Fig. 33) and ran-
dom chaotic-like motion of subgroups. Changing the par-
ticle density and the physical boundary of the system –
for example from a circular to an elliptical shape – again
results in different types of collective motion; for certain
densities and boundary-types the system exhibits non-
trivial spatio-temporal behavior of compact subgroups
of units. The reason why coherent collective motion ap-
pears in such a system is that each of these inelastic
collisions between isotropic particles increase the overall
velocity correlation (it can be shown that the collisions
do not preserve the momentum, but lead to at least a
slight increase each time). Such numerical experiments
are fundamental in clarifying the question regarding the
minimal requirements for a system to exhibit collective
motion, based solely on physical interactions.
The first work in which the relevance of the simulta-

neous presence of volume exclusion and self-propulsion
for an effective alignment of the particles was published

FIG. 33 (Color online) Vortex formation in a reflective round
boundary. Reflecting boundaries cause particles to move par-
allel to them. Both clockwise and anti-clockwise vortices can
form according to the randomly chosen initial direction. (a)
A snapshot of the particles (N = 900). (b) Their movement
within a short period of time. (c) Coarse graining average
velocity. From Grossman et al. (2008).

by Peruani et al. (2006). They stressed the importance
of the particle shape by showing than self-propelled ob-
jects moving in a dissipative medium and interacting by
inelastic collision, can self-organize into large coherently
moving clusters. Their simulations have direct relevance
to the experiments on shaken rods (Kudrolli, 2010) and
on the collective motion patterns by mixobacteria (Wu
et al., 2009). Furthermore, Peruani et al. (2006) showed
that self-propelled rods exhibit non-equilibrium phase
transition between a monodisperse phase to an aggre-
gation phase that depends on the aspect ratio and den-
sity of the self-propelled rods. To see all this, no specific
boundary conditions had to be applied due to the elon-
gated shape of the particles.

In a similar spirit, Ginelli et al. (2010) investigated in
more detail the properties of a collection of elongated,
asymmetric (“polar”) units moving in two dimensions
with constant speed, interacting only by “nematic col-
lisions”, in the presence of noise. We discuss this work
here, although the rule applied can be regarded as result-
ing from a mixture of volume exclusion and alignment
(see also Peruani et al. (2008)). Nematic collision, illus-
trated on Fig. 34, means the following: if the included
angle of the two velocity vectors belonging to the colliding
rod-like units was smaller than 180◦ before they impinge
on each other, they would continue their motion in the
same direction, in parallel, after the collision. If this an-
gle was bigger than 180◦, then they would continue their
travel in parallel, but in the opposite direction. Four
phases were observed, depending on the strength of the
noise (labeled I to IV by increasing noise-values). Phase I
is spatially homogeneous and ordered, from which phase
II differs in low-density disordered regions, which appear
in the steady state. The order-disorder transition occurs
between phases II and III. Both of these phases (II and
III) are characterized by spontaneous segregations into
bands, but in phase III these bands are thinner and are
more unstable, constantly bending, breaking, reforming
and merging, displaying a persistent space-time chaos.
Phase IV is spatially homogeneous with global and local
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FIG. 34 Nematic collision means that, if the included angle
of the two velocity vectors belonging to the colliding rod-
like units was smaller than 180◦ before they impinge on each
other, they would continue their motion in the same direction,
in parallel, after the collision. If this angle was bigger than
180◦, then they would continue their travel in parallel, but in
the opposite direction. From Ginelli et al. (2010).

disorder on small length- and timescales.

A swarm of identical self-propelled particles interact-
ing via a harmonic attractive pair potential in two di-
mensions in the presence of noise was also considered.
By numerical simulations Erdmann et al. (2005) found
that, if the noise is increased above a certain limit, a
transition occurs during which the translational motion
breaks down and instead of it, rotational motion takes
shape.

2. Models with alignment rule

Compared to the original SVM, an important addi-
tional feature has been introduced by Grégoire et al.
(2003) who added adhesion between the particles to avoid
“evaporation” of isolated clusters in simulations with
open boundary conditions. Adding this new feature has
changed the universality class (order of transition) and
the observed ordering was discontinuous as a function of
perturbations.

The most common way to introduce cohesion to a sys-
tem without resorting to global interactions, is to com-
plement the interaction rules defining the units’ behavior
with some kind of pairwise attraction-repulsion mecha-
nism. In this spirit, Chaté et al. (2008a) have added
a new term to Eq. (13), which determines a pairwise
attraction-repulsion force between the particles (See Fig.
35).

Another generalization has recently been considered
by Szabó et al. (2009). By extending the factors influ-
encing the ordering, the model assumes that the velocity
of the particles depends both on the velocity and the
acceleration of neighboring particles. (Recall, that in
the original model it depends solely on the velocity).
Changing the value of a weight parameter determining
the relative influence of the velocity and acceleration
terms, the system undergoes a kinetic phase transition.
Below a critical value the system exhibits disordered
motion, while above the critical value the dynamics
resembles that of the original SPP model.

One might interpret the particles of the SVM as polar

FIG. 35 (Color online) The SVM augmented with cohesive
interactions among the particles. A snapshot of a flock con-
sisting of 16,384 particles, moving ‘cohesively’. Adapted from
Chaté et al. (2008a).

FIG. 36 (Color online) A snapshot of the simulations with
point-like particles, but subject to a nematic-type interac-
tion, performed by Chaté et al. (2008a). The behavior of
the system is qualitatively different from those with isotropic
particles and exhibits characteristic density and velocity fluc-
tuations. Color code refers to the local denseness from blue
(low density) to yellow (high density). Adapted from Chaté
et al. (2008a).

units, since they carry a velocity vector. Accordingly,
Chaté et al. (2006) consider a bipolar version of the SVM,
in which after the angle corresponding to the local av-
erage velocity is determined, the particles can ’decide’
whether they move along this direction or in a direction
opposite to it. Such a model arises from the consideration
of the self-propelled motion of elongated particles prefer-
ably moving along their main axis. The authors find
a distinctively different disorder-order transition involv-
ing huge density fluctuations, compared to the previously
considered cases. According to Chaté et al. (2008a), the
expression ⟨v⃗j(t)⟩Si

appearing in the interaction rule of
the SVM (Eq. (13)) – expression which is in close relation
to the local order parameter around particle i in its neigh-
borhood S – can be replaced by the eigenvector of the
largest eigenvalue belonging to the nematic tensor cal-
culated on the same neighborhood. Denoting the angle
defining the direction of v⃗j by θj , this eigenvalue, which
is also directly related to the local order parameter, for
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uniaxial nematics in two space dimensions is calculated
as | ⟨exp(2iθj(t))⟩Si

|. j denotes those particles that are
within the neighborhood S of particle i, Si, at time-step
t. Since each particle i chooses the direction defined by θi
or the opposite direction θi+π with the same probability
1/2, Eq. (14) gets the form

x⃗i(t+ 1) = x⃗i(t)± v⃗i(t+ 1)

A snapshot of the resulting collective motion pattern
can be seen in Fig. 36.
By using a novel set of diagnostic tools related to the

particles’ spatial distribution Huepe and Aldana (2008)
compared three simple models qualitatively reproducing
the emergent behavior of various animal swarms. The
most important aim of introducing the above measures
is to unveil previously unreported qualitative differences
and characteristics (which were unclear) among the var-
ious models in question. Comparing only the standard
order parameters (measuring the degree of alignment),
the authors find very similar order-disorder phase tran-
sitions in the investigated models, as a function of the
noise. They demonstrated that the distribution of clus-
ter sizes is typically exponential at high noise-values, ap-
proaches a power-law distribution at reduced noise levels,
and interestingly, that this trend is sometimes reversed
near to the critical noise value, suggesting a non-trivial
critical behavior.
Smith and Martin (2009) used a Lagrangian individ-

ual based model with open boundary conditions to show
that the Morse and the Lennard-Jones potentials (cou-
pled with an alignment potential) are also capable to de-
scribe many aspects of flocking behavior.

C. Continuous media and mean-field approaches

Self-propelled particles, during their motion, consume
energy and dissipate it in the media they move in, mean-
while performing rich collective behavior at large scales.
Recent studies devoted to deriving hydrodynamic equa-
tions for specific microscopic models have led to new ideas
and approaches within this field.
The continuous media approaches to collective motion

have been carried out, on one hand, in the context of
giving a macroscopic description of SPP systems, how-
ever, at the same time, also to interpret the so called
“active matter” systems associated mainly with applica-
tions from physics, such as active nematics.
The first theory describing the full nonlinear higher

dimensional dynamics was presented in (Toner and Tu,
1995, 1998). Tu and Toner followed the historical prece-
dent (Forster et al., 1977) of the Navier-Stokes equation
by deriving the continuum, long wavelength description
not by explicitly coarse graining the microscopic dynam-
ics, but, rather, by writing down the most general contin-

uum equations of motion for the velocity field v⃗ and den-
sity ρ consistent with the symmetries and conservation
laws of the problem. This approach allows to introduce
a few phenomenological parameters, (like the viscosity in
the Navier-Stokes equation) whose numerical values will
depend on the detailed microscopic behavior of the par-
ticles. The terms in the equations describing the large-
scale behavior, however, should depend only on symme-
tries and conservation laws, and not on the microscopic
rules.

The only symmetry of the system is rotation invari-
ance: since the particles lack a compass, all direction of
space are equivalent to other directions. Thus, the “hy-
drodynamic” equation of motion cannot have built into
it any special direction picked “a priori”; all directions
must be spontaneously selected. Note that the model
does not have Galilean invariance: changing the veloci-
ties of all the particles by some constant boost v⃗b does
not leave the model invariant.

To reduce the complexity of the equations of motion
still further, a spatial-temporal gradient expansion can
be performed keeping only the lowest order terms in gra-
dients and time derivatives of v⃗ and ρ. This is motivated
and justified by the aim to consider only the long dis-
tance, long time properties of the system. The resulting
equations are

∂tv⃗ + λ1(v⃗∇)v⃗ + λ2(∇v⃗)v⃗ + λ3∇(|v⃗|2) =

αv⃗−β|v⃗|2v⃗−∇P +DL∇(∇v⃗)+D1∇2v⃗+D2(v⃗∇)2v⃗+ ξ⃗
(24)

and

∂tρ+∇(ρv⃗) = 0. (25)

In Eq. (24), the terms α, β > 0 make v to have a

nonzero magnitude, DL,1,2 are diffusion constants and ξ⃗
is an uncorrelated Gaussian random noise. The λ terms
on the left hand side are the analogs of the usual con-
vective derivative of the coarse-grained velocity field v⃗ in
the Navier-Stokes equation. Here the absence of Galilean
invariance allows all three combinations of one spatial
gradient and two velocities that transform like vectors; if
Galilean invariance did hold, it would force λ2 = λ3 = 0
and λ1 = 1. However, Galilean invariance does not hold,
and so all three coefficients can be non-zero phenomeno-
logical parameters whose values are determined by the
microscopic rules. Eq. (25) reflects the conservation of
mass (birds). The pressure P depends on the local den-
sity only, as given by the expansion

P = P (ρ) =

∞∑
n=1

σn(ρ− ρ0)
n (26)

where ρ0 is the mean of the local number density and σn

is a coefficient in the pressure expansion.
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It is possible to treat the whole problem analytically
using dynamical renormalisation group and show the ex-
istence of an ordered phase in 2D, and extract exponents
characterizing the velocity-velocity and density-density
correlation functions (Toner and Tu, 1998). The most
dramatic result is that an intrinsically non-equilibrium
and nonlinear feature, namely, convection, suppresses
fluctuations of the velocity v⃗ at long wavelengths, mak-
ing them much smaller than the analogous fluctuations
found in ferromagnets, for all spatial dimensions d < 4.

Bertin et al. (2006, 2009) made a very important step
towards a fundamental theory of collective motion by de-
riving the hydrodynamic equations for the density and
velocity fields of a gas of self-propelled particles with
binary interactions from the corresponding microscopic
rules. They gave explicit expressions for the transport
coefficients as a function of the microscopic parameters.
Comparison with numerical simulations on a standard
model of self-propelled particles (SVM, see Sec. IV.A)
resulted in an agreement as well as in a demonstration
of the robustness of the phase diagram they obtained.
Ihle (2010) showed how to explicitly coarse grain the mi-
croscopic dynamics of the SVM to obtain expressions for
all transport coefficients as a function of the three main
parameters, noise, density and velocity.
Over the last 4 years, the hydrodynamic equations be-

came increasingly precise by including higher order terms
and more precise coefficients. Very recently Mishra et al.
(2010) solved the equations describing the collective mo-
tion of self-propelled polar rods moving on an inert sub-
strate. From their theoretical considerations and numer-
ical analysis, the authors obtained a remarkable phase
diagram for this system (Fig. 37). They showed that
the same physics that leads to global ordering destabi-
lizes the homogeneous ordered state above a critical value
of self-propulsion speed and allows the nonlinear equa-
tions to admit a propagating front solution that yields
the striped phase identified numerically. The two phases
they observed, namely, the striped phase and the fluctu-
ating flocking phase, have been identified earlier in the
context of numerical studies of the SVM moel, thus, the
approach of Mishra et al. (2010) identified the origin of
these phenomena in the model independent framework
of the dynamics of conserved quantities and broken sym-
metry variable.
It is important to point out that the above mentioned

equations (Bertin et al., 2006, 2009; Mishra et al., 2010)
obtained as a result of detailed derivations based on mi-
croscopic dynamics have an analogous structure and con-
tain the same major terms as the ones (Eqs. 24 and 25)
proposed by Toner and Tu inspired by general consider-
ations.
Another important approach involving continuum me-

chanics is based on considering the hydrodynamic proper-
ties of systems consisting of microscopic swimmers. This
is a quickly growing field of its own and has recently been

FIG. 37 (Color online) (A) Phase diagram of the solutions of
the Eqs. (24) and (25) in the (v0, ρ0) plane. At v0 = 0 the
system exhibits a continuous mean-field transition at ρ0 = ρc
from an isotropic (I) to a homogeneous polarized (HP) state.
For ρ0 > ρc there is a critical vc(ρ0) separating a polarized
moving state with large anomalous fluctuations, named the
fluctuating flocking state, at low self-propulsion speed from
a high-speed phase of traveling stripes. The circles denote
the values of vc(ρ0) obtained numerically. The dashed-dotted
line (purple online) is the longitudinal instability boundary
vLc1(ρ0) obtained in the calculations. The dashed line is the
splay instability boundary vSc (ρ0). (B) shows a snapshot of
the density profile in the striped phase. The stripes travel
horizontally. (C) shows a snapshot of the density profile in
the coarsening transient leading to the fluctuating flocking
state at v0 < vc. Density values grow from dark to light.
After Mishra et al. (2010).

reviewed by Lauga and Powers (2009). Here we briefly
describe one of the representative examples of interpret-
ing this aspect of collective motion.

Starting with a simple physical model of interacting
active particles (swimmers) in a fluid, Baskaran and
Marchetti (2009) derived a continuum description of the
large-scale behavior of such active suspensions. They dif-
ferentiated “shakers” from “movers”. Both of them are
active, but a mover, in contrast with a shaker, is self pro-
pelled. Shakers are also active, but they do not move
themselves. Furthermore “pushers” are propelled from
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FIG. 38 (Color online) The simplified physical model of the
active self-propelled particles in the paper of Baskaran and
Marchetti (2009) are basically asymmetric rigid dumbbells.
Two different size of spheres (S and L) are connected with an
infinitely rigid rod having a length l. The radii of the smaller
and larger spheres are aS and aL respectively. The geomet-
rical midpoint of the swimmer is depicted by M , while the
hydrodynamic center is marked with C, at which the propul-
sion is centered. The orientation of these asymmetric particles
are characterized by a unit vector ν̂. |f | denotes the force they
exert on the fluid they swim in. With this notation, pullers
correspond to f < 0 and pushers to f > 0. From Baskaran
and Marchetti (2009).

the rear (like most bacteria), while “pullers” are pro-
pelled by flagella at the head of the organism.

The simplified physical model of a swimmer is basically
an asymmetric rigid dumbbell, as depicted in Fig. 38.
Each of these units has a length l, and their orientation
is characterized by a unit vector ν̂, directed along its axis
from the small sphere (having radius aS) to the large
sphere (having radius aL). They exert a force dipole
of strength |f | on the fluid they swim in, which has a
viscosity η̃. The velocity of the particles are v⃗SP = ν0ν̂.

The dynamics of a swimming particle α is given by

∂tr⃗Lα = u⃗(r⃗Lα),

∂tr⃗Sα = u⃗(r⃗Sα), (27)

where r⃗Sα and r⃗Lα denote the position of the small and
large “heads” of swimmer α, respectively, with respects
to a fixed pole. u⃗(r⃗) is the flow velocity of the fluid at
point r⃗ which is determined by the solution of the Stokes
equation, that is,

η̃∇2u⃗(r⃗) = ∇p− F⃗active + F⃗noise, (28)

where F⃗noise describes the effect of the fluid-fluctuations,
and F⃗active is the active force exerted by swimmer α on
the fluid.

Closed formulas can be obtained for the translational
and rotational motion, and for the hydrodynamical force
and the torque between two swimming particles as well.
Baskaran and Marchetti (2008) analyzed a simple model
that captured two crucial properties of self-propelled sys-
tems: the orientable shape of the particles and the self
propulsion. Using the tools of non-equilibrium statistical

mechanics they derived a modified Smoluchowski equa-
tion for SPP and used it to identify the microscopic origin
of several observed or observable large scale phenomena.

Peruani et al. (2008) suggested a mean-field theory
for self-propelled particles which accounted for ferromag-
netic (F) and liquid-crystal (LC) alignment. The ap-
proach predicted a continuous phase transition with the
order parameter scaling with an exponent of 1/2 in both
cases. The critical noise amplitude below which ori-
entational order emerges found to be smaller for LC-
alignment than for F-alignment. Czirók et al. (1999)
derived a continuum theory that can account for a sur-
prising observation, namely that – in contrast with pre-
ceding analytical predictions – a system of self-propelled
particles can exhibit spontaneous symmetry breaking and
self-organization in one dimension. Csahók and Czirók
(1997) presented a hydrodynamic approach to describe
the motion of migrating bacteria as a special class of
SPP systems.

D. Exact results

By exact results here we mean results obtained with a
minimum or completely missing amount of any kind of
assumptions or approximations concerning the behavior
of the moving units (beyond the rules/definitions they
obey). Originally most results in this area were obtained
only for systems in which the noise (an otherwise essential
aspect of flocking) was completely neglected. Thus, one
could consider the related systems as fully deterministic.
However, it has recently been shown (see later) that the
theorems we review below are in most cases valid for
systems with a low level of perturbations as well.

1. The Cucker-Smale model

An exact formulation of the convergence to consen-
sus in a population of autonomous agents was achieved
by Cucker and Smale (2007a) a and Cucker and Smale
(2007b) b based on their model (CS). Following their
train of thought, let us consider birds, denoted by i =
1, . . . , k, moving in 3 dimensional (Euclidean) space, ℜ3,
endeavoring to reach a common direction ( – which is in
this case the topic of “consensus”). The position of the
ith bird is given by xi(∈ ℜ3). (Of course, xi = xi(t).)
Let us define the adjacency matrix A = (aij), where the
element aij measures the ability of birds i and j to com-
municate with each other, or one could say, the influence
they exert on each other. Formally,

aij =
1

(1 + ∥xi − xj∥2)β
, (29)

where β ≥ 0 (not to be confused with the critical ex-
ponent introduced in Sec. III.A). Thus, the closer the
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birds i and j are to each other, the bigger the influence is
among them. The main advantage of this form of the dis-
tance dependence of the interaction is that it is a smooth
function allowing analytical treatment. Importantly, this
adjacency matrix A changes with time, since the posi-
tions of the birds change with time. For the more mani-
fest usage of graphs they introduce the Laplacian matrix
of A as well, L = D − A, where D is a k × k diagonal
matrix whose ith diagonal element is di =

∑k
j=1 aij .

Denoting the velocity of bird i at time t by vi(t),

f⃗ij = −c

{(
|r⃗j − r⃗i|

rc

)−3

−
(
|r⃗j − r⃗i|

rc

)−2
}

·
(
r⃗j − r⃗i

rc

)
· e−

|r⃗j−r⃗i|
rc , (30)

vi(t+ h)− vi(t) = h

k∑
j=1

aij(vj − vi) (31)

Recall, that the aij value measures the strength of the
communication between birds i and j, thus the right hand
side of Eq. (31) signifies a local averaging around bird i.
The equations of flocking are obtained by letting h tend

to zero:

x′ = v

v′ = −Lv (32)

on (ℜ3)k × (ℜ3)k. (Note that the matrices A and
L are acting on (ℜ3)k by mapping (v1, . . . , vk) to
(ai1v1 + . . .+ aikvk)i≤k.)

After the above preparations, one can ask, under what
conditions do a system (described by the above equations)
exhibit flocking behavior? When do the solutions of vi(t)
converge to a common v∗(∈ ℜ3)? One of the most im-
portant results of Cucker and Smale (2007a) is that the
emergence of the flocking behavior depends on β, accord-
ing to the following
Theorem: For the equations of flocking (Eqs. 32)

there exists a unique solution for all t ∈ ℜ.
If β < 1/2 then the velocities vi(t) tend to a common

limit v∗(∈ ℜ3) as t → ∞, where v∗ is independent of i,
and the vectors xi − xj tend to a limit-vector x̂ij for all
i, j ≤ k, as t → ∞, that is, the relative positions remain
bounded.
If β ≥ 1/2 dispersal (the split up of the flock) is pos-

sible. But, provided that some certain initial conditions
are satisfied, flocking will occur.

To obtain more general results for the conditions of
flocking, let us define the so called Fiedler-number, which
is a crucial descriptive measure of the conditions needed
to be satisfied for the emergence of flocking.

Let G denote a graph and A be the corresponding ad-
jacency matrix defined as usually, that is,

aij =

{
1 if i and j are connected,
0 if not

(33)

Let D be a diagonal matrix with the same dimen-
sions as A, defined by d(i, i) =

∑
j a(i, j). Then the

general form of the Laplacian matrix of G, is given as
L = L(G) = D − A. The eigenvalues of L can be ex-
pressed by

0 = λ1 ≤ λ2 ≤ λ3 ≤ . . . (34)

Then, the Fiedler-number F is defined as the second
eigenvalue of L, λ2, that is

F = F (G) = λ2 (35)

This Fiedler-number F is zero, if the graphG is separated
(the flock disintegrates to two or more smaller flocks),
and non-zero if and only if G is connected.

Importantly, in the case of flocking, F = F (t) (it is
a function of time), because the elements of G depend
on the xi positions of the individual birds. In fact, one
obtains flocking, if and only if

0 < const ≤ F = F (x(t)). (36)

Otherwise the flock disperses.
The above definitions can be extended to weighted, gen-
eral matrices as well.

In addition, Cucker and Dong (2010) extended the
model by adding to it a repelling force between particles.
They showed that, for this modified model, convergence
to flocking is established along the same lines while, in
addition, avoidance of collisions (i.e., the respect of a
minimal distance between particles) is ensured.

The main differences between the systems described
by Cucker and Smale and by the SVM are, from the
one hand, is the definition of the range of interaction,
and from the other hand, is the existence (or absence)
of noise. The SVM comprises noise, while the original
Cucker-Smale model does not. Regarding the range of
interaction, in the present model it is a long-range ef-
fect decaying with the distance according to β (see Eq.
(29)), while in the SVM it has the same intensity for all
the neighboring units around a given particle, but only
within a well-defined range (see Eq. (13)).

Very recently perturbations have also been considered
in the CS model. This has been done with various
forms of noise by Cucker and Mordecki (2008) and Shang
(2009), modeled with stochastic differential equations by
Ha et al. (2009), and taking into account random failures
between agent’s connections by Dalmao and Mordecki
(2009).
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Other works developing the Cucker-Smale (CS) model
in several directions include an extension to fluid-like
swarms (Carrillo et al., 2010; Ha and Liu, 2009; Ha and
Tadmor, 2008), collision avoiding flocking (Cucker and
Dong, 2010), the inclusion of agents with a preferred ve-
locity direction (Cucker and Huepe, 2008), and its pro-
posal as a control law for the spacecrafts of the Dar-
win mission of the European Space Agency (Perea et al.,
2009).

2. Network and control theoretical aspects

Networks have recently been proposed to represent
a useful approach to the interpretation of the intri-
cate underlying structure of connections among the el-
ements of complex systems. A number of important fea-
tures of such networks have been uncovered (Albert and
Barabási, 2002; Watts and Strogatz, 1998). It has been
shown that in many complex systems ranging from the
set of protein interactions to the collaboration of scien-
tists the distribution of the number of connections is de-
scribed by a power law as opposed to a previously sup-
posed Poissonian. Most of the networks in life and tech-
nology are dynamically changing and are highly struc-
tured. In particular, such networks are typically made of
modules that are relatively more densely connected parts
within the entire network (e.g., interacting flocks) (New-
man, 2004, 2006; Palla et al., 2005; Scott, 2000). The
evolution of these modules plays a central role in the be-
havior of the system as a whole (Palla et al., 2007).

In these terms, a dynamically changing network can
be associated with a flock of collectively moving organ-
isms (or robots, agents, units, dynamic systems, etc.). In
such a network two units are connected if they interact.
Obviously, if two units are closer in space have a better
chance to influence the motion of each other, but their
interaction can also be disabled by environment or in-
ternal disturbances. Since the units are moving and the
environment is also changing, the network of momentar-
ily interacting units is evolving in time in a complex way.
Using the conventional terminology of control theory, this
kind of topology (that is, when certain number of edges
are added or removed from the graph from time to time),
is called “switching topology”.

Jadbabaie et al. (2003) investigated a theoretical ex-
planation for a fundamental aspect of the SVM, namely,
that by applying the nearest neighbor rule, all particles
tend to align into the same direction despite the absence
of centralized coordination and despite the fact that each
agent’s set of nearest neighbors changes in time. By ad-
dressing the question of global ordering in models analo-
gous to Eqs. (13) and (15) they presented some rigorous
conditions for the graph of interactions needed for arriv-
ing at a consensus.

Several further control theory inspired papers dis-

cussed both the question of convergence of the simplest
SPP models as well as the close relation of flocking to
such alternative problems as consensus finding, synchro-
nization and “gossip algorithms”(Blondel et al., 2005;
Boyd et al., 2005).

Ren and Beard (2005) considered the problem of con-
sensus finding under the conditions of limited and unre-
liable information exchange for both discrete and contin-
uous update schemes. They found that in systems with
dynamic interaction-topologies consensus can be reached
asymptotically, if the union of the directed communi-
cation network across some time intervals has spanning
trees frequently enough, as the system evolves. Similarly,
Xiao and Wang (2006) found the existence of spanning
trees to be crucial in the directed graphs representing
the interaction topologies, in systems in which the topol-
ogy, weighting factors and time-delays are time-invariant.
They studied the consensus-problem for dynamic net-
works with bounded time-varying communication delays
under discrete-time updating scheme, based on the prop-
erties of non-negative matrices.

An efficient algorithm controlling a flock of unmanned
aerial vehicles (UAVs) is considered by Ben-Asher et al.
(2008). The units are organized into a minimal set of
rooted spanning trees (preserving the geographical dis-
tances) which can be used for both distributed computing
and for communication as well, in addition to computa-
tion and propagation of the task assignment commands.
The proposed protocol continually attempts to keep the
number of trees minimal by fusing separate adjacent trees
into single ones: as soon as radio connection between two
nodes belonging to separate trees occurs, the correspond-
ing networks fuse. This arrangement overcomes the typ-
ical deficiencies of a centralized solution. The motion of
the certain UAVs is coordinated by Reynold’s algorithm
(Reynolds, 1987) (see also Sec. IV.A).

Tanner et al. (2003a) proposed a control law for flock-
ing in free-space. Dynamically changing topology of the
interacting units has also been considered (Tanner et al.,
2003b). Lindhe et al. (2005) suggested a flocking algo-
rithm providing stable and collision-free flocking in envi-
ronments with complex obstacles. Holland et al. (2005)
proposed a flocking scheme for unmanned ground vehi-
cles similar to Reynolds’ algorithm based on avoidance,
flock centering and alignment behaviors, where the units
receive the range, bearing and velocity information from
the base station based on pattern recognition techniques.
Very recently, many further papers have appeared both
on the original flocking problem as well as on interesting
variants including the role of “leaders”, delays in com-
munication, convergence time, etc.

One of the most general theoretical frameworks for de-
sign and analysis of distributed flocking algorithms was
discussed by Olfati-Saber (2006). Three algorithms were
investigated in detail: two for free-flocking (one frag-
mented and one not) and one for constrained flocking.
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The basic driving rules and principles and their relation
to specific underlying network structures were discussed.
Formally, from a control theoretical view-point, the

problem looks as next: given a set of agents, who want
to reach a consensus, which, in this terminology, means
a common value (an “agreement”) regarding a certain
quantity that depends on the state of the agents. (For
example, this ’certain quantity’ can be the direction of
motion.) The interaction rule that defines the informa-
tion exchange between a unit and its neighbors is called
the consensus algorithm (or “protocol”).
This system can be represented by a graph G = (V,E),

in which the agents are the nodes V = {1, 2, . . . , n}. Two
nodes are connected with an edge e ∈ E if, and only if,
they communicate with each other. In this case they
are neighbors. Accordingly, the neighbors of node i are
Ni = j ∈ V : (i, j) ∈ E. If the state of the ith agent
(regarding the quantity of interest) is denoted by xi, then
the agreement is

x1 = x2 = x3 = . . . = xn. (37)

Within this framework, reaching a consensus means to
converge asymptotically to an agreement (defined by Eq.
37) via local communication.
Let A = (aij) denote the adjacency matrix, which de-

fines the communication pattern among the agents: if i
and j interact with each other, then aij > 0, otherwise
aij = 0. Notably, in the case of flocks A = A(t) and
G = G(t), that is, they vary with time. Such graphs
– called dynamic graphs – are useful tools for describ-
ing the (time-dependent) topology of flocks and mobile
sensor networks (Olfati-Saber, 2006).
Assuming a simple protocol, the state of agent i can

change according to

ẋi(t) =
∑
j∈Ni

aij (xj(t)− xi(t)) (38)

which linear system always converges to a collective deci-
sion, that is, it defines a distributed consensus algorithm
(Olfati-Saber and Murray, 2004).
In the case of undirected graphs (when aij = aji for

all i, j ∈ V ) the sum of the sate-values does not change,
that is,

∑
i ẋi = 0. Applying this condition for t = 0 and

t = ∞,

α =
1

n

∑
i

xi(0), (39)

that is, the collective decision (α) is the average of the
initial state of the nodes.
In fact, regarding the protocol defined by Eq. (38),

a more strict statement can also be formulated (Olfati-
Saber et al., 2007):
Lemma: Let G be a connected undirected graph.

Then, the algorithm defined by Eq. (38) asymptotically
solves an average-consensus problem for all initial states.

E. Relation to collective robotics

The collective robotics literature is on the one hand
about mathematical questions concerning the control
theoretical aspects of coherently moving devices whereas,
on the other hand, it represents important efforts to even-
tually produce and describe the collective patterns of be-
havior of a collection (ranging from 5 to a few dozen)
of robots moving on a plane surface. Experimental at-
tempts to produce flocking of aerial devices have been
very limited.

In one of the earliest attempts towards obtaining flock-
ing in a group of actual robots, Mataric (1994) combined
a set of “basic behaviors”; namely safe-wandering, aggre-
gation, dispersion and homing. In this study, the robots
were able to sense the obstacles in the environment, lo-
calize themselves with respect to a set of stationary bea-
cons and broadcast the position information to the other
robots in the group. Kelly and Keating (1996) used a
group of ten robots, which were able to sense the obsta-
cles around them through ultrasound sensors, and the
relative range and bearing of neighboring robots through
the use of a custom-made active infra-red (IR) system.
The proximity sensors on most mobile robots (such as ul-
trasound and IR-based systems) can sense only the range
to the closest point of a neighboring robot and multiple
range-readings can be returned from a close neighbor-
ing robot. Furthermore, as Turgut et al. (2008) pointed
out, the sensing of bearing, velocity and orientation of
neighboring robots is still difficult with off-the-shelf sen-
sors available on robots. Hence, there exist a major gap
between the studies that propose flocking behaviors and
robotics.

An interesting experiment on flocking in 3D was car-
ried out by Welsby et al. (2001) using motorized balloon-
like objects. The slow coherent wondering of 3 of the
robots was observed. Model (toy) helicopters were also
proposed to observe flocking in three dimensions (Nardi
and Holland, 2006).

Several major efforts have been documented about
the collective exploration of swarms of robots. A va-
riety of algorithms have been published about the op-
timal strategy to locate a given object or uncover the
details of an area (in which the robots could move)
having a complex shape. Recent papers have demon-
strated that using an appropriate algorithm, such tasks
can be achieved effectively. The largest collection of
swarming robots has now over 100 miniature devices
(http://www.swarmrobot.org/).

Turgut et al. (2008) examined the spatial self organiza-
tion properties of robot swarms using mobile units (called
“Kobots”, see Fig. 39). Every unit were equipped with
a digital compass, an infrared-based short range sensing
system (capable of measuring the distance from obstacles
and detecting other robots) and an other appliance sens-
ing the relative direction of the neighboring units. The
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FIG. 39 (Color online) A photo of seven mobile robots (called
“Kobots”) moving in a swarm. According to Turgut et al.
(2008), the main factor defining the size of the swarm (the
number of Kobots flocking together) is the range of commu-
nication, and it is highly independent from both the noise
(encumbering the sensing systems) and from the number of
neighbors each robot had. Adapted from Turgut et al. (2008).

group investigated the behavior of the flock in the func-
tion of: (1) the amount and nature of the noise encum-
bering the sensing systems (2) the number of neighbors
each unit had, and (3) the range of the communication.
They found that the main factor defining the size of the
swarm (number of units that can flock together) is the
range of communication, and that this size is highly ro-
bust against the other two parameters.
The motion of such robot swarms can be influenced by
externally guiding some of their members towards a de-
sired direction (Celikkanat and Sahin, 2010).
Only a few examples are known about trying to com-

bine robots and animals into a single system and moni-
tor the joint behavior. In a beautiful paper Halloy et al.
(2007) investigated whether the behavior of a population
of cockroaches can be influenced by micro-robots imitat-
ing cockroaches (these micro-robots had about the same
size and had the same odor than the cockroaches). It
turned out that it was possible to increase the number of
cockroaches hiding under a given “shelter” if the mini-
robots were moving there upon switching on the light.
In a more theoretical work, Sugawara et al. (2007) in-

vestigated the formations of motile elements (robots) as
a function of various control parameters. Their kinetic
model – inspired by living creatures, such as birds, fishes,
etc. – is defined by Eqs. (40) and (41).

m
dv⃗i
dt

= −γv⃗i + an⃗i +
∑
j ̸=i

αij f⃗ij + g⃗i (40)

τ
dθi
dt

= sin(ϕi − θi) +
∑
j ̸=i

Jijsin(θj − θi), (41)

where r⃗i is the position, v⃗i is the velocity, and n⃗i is the
heading unit vector of the ith element of a swarm con-
sisting of N units (i ∈ 1, 2, . . . , N), respectively. The

velocity v⃗i is relative to the medium (air, fluid, etc.) in
which the motion occurs. The last quantity, n⃗i is paral-
lel to the axis of unit i, but not necessarily parallel to its
velocity v⃗i. For example, bigger birds often glide, during
which the heading direction n⃗i and the velocity v⃗i en-
closes an angle, which is assumed to disappear within a
relaxation time τ . In other words, τ is the time needed
to n⃗i and v⃗i to relax to parallel. θi and ϕi are the angles
between the x axis and the vectors n⃗i and v⃗i, respec-
tively. m is the mass of the elements (of all the elements
– apart from the initial conditions, every unit is identi-
cal in this model). a is the motile force acting in the
direction of n⃗i, and γ is a quantity proportional to the
relaxation time in velocity. The term αij denotes a “di-
rection sensibility factor” which is introduced to account
for the possible anisotropy of the interaction. For exam-
ple, if the robots gather information about the motion of
their mates through vision (that is, with camera), than
the interaction is strong towards the visual field that is
covered by the camera, and zero elsewhere. It is defined
as

αij = 1 + d cosΦ, (42)

where Φ is the angle enclosed by n⃗i and r⃗j − r⃗i, and d is
the sensitivity control parameter, 0 ≤ d ≤ 1.

Jij is introduced to account for the observation that
animals tend to align with each other (Hunter, 1966)
through an interaction which is supposed to decrease in
the linear function of distance between individuals i and
j:

Jij = k

(
|r⃗j − r⃗i|

rc

)−1

, (43)

where k is the control parameter and rc is the preferred
distance between neighbors. The term gi is a force di-
rected towards the center of the group, and finally, fij
denotes a mutual attractive/repulsive force between ele-
ments i and j, in analogy with the intermolecular forces,
as suggested by Breder (1954).

f⃗ij = −c

{(
|r⃗j − r⃗i|

rc

)−3

−
(
|r⃗j − r⃗i|

rc

)−2
}

·
(
r⃗j − r⃗i

rc

)
· e−

|r⃗j−r⃗i|
rc , (44)

where c is the control parameter defining the magnitude
of the interaction.

Using numerical simulations and experiments with
small mobile robots (called “Khepera”, a popular de-
vice for such experiments), the authors observed vari-
ous formations, depending on the control parameters (see
Fig. 40). They classified the observed collective motions
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FIG. 40 Trajectories with various control parameters, ob-
tained from numerical simulations. The solid line shows the
center of mass. (a) marching, (b) oscillation, (c) wandering,
and (d) swarming. Adapted from Sugawara et al. (2007).

into four categories: (1) “Marching”. Obtained when the
value of the anisotropy of mutual attraction is kept small.
This state exhibits only small velocity-fluctuations and it
is stable against disturbance. (Fig. 40 a) (2) The cate-
gory called “Oscillation” includes motions exhibiting reg-
ular oscillations, such as the wavy motion of the swarm,
along its linear trajectory, depicted on Fig. 40 b. The sta-
bility of this state is weaker than that of the marching,
and these two phases (1 and 2) may coexist for some pa-
rameters. (3) “Wandering”. When d ̸= 0 (see Eq. (42)),
the mutual positions of the units abruptly vary, accord-
ing to stochastic changes in the direction of motion. Such
a phase is often exhibited by – for example – small non-
migratory birds. (Fig. 40 c) (4) “Swarming”. Irregularly
moving units within a persistent cluster. The mobility of
the entire cluster is small. For example mosquitoes travel
in such swarms. (See Fig. 40 d).

In general, the point in organizing robots into a swarm
is to accomplish tasks (preferably without centralized
control), that are too challenging for an individual agent.
The fields of the possible applications are extremely wide,
including practical applications (such as the localiza-
tion of hazardous emission sources in unknown large-
scale areas (Cui et al., 2004), the surveillance in hostile
or dangerous places (Marshall, 2005), the optimization
of telecommunication networks (Lipperts and Kreller,
1999)) as well as theoretical topics (like discrete opti-
mization (Dorigo et al., 1999) or providing new heuristics
for the Traveling Salesman Problem (Dorigo and Gam-
bardella, 1997)).

Furthermore, within these robot swarms, the appear-
ance of the most variable forms of collective behavior
(like co-operative, altruistic, selfish, etc.) can be
studied as well through various genetic algorithms,
conditions and tasks. Many homepages maintained
by research groups working on this field contain fur-
ther information for those who are interested (for
example Laboratory of Autonomous Robotics and
Artificial Life: http://laral.istc.cnr.it/, Labora-
tory of Intelligent Systems: http://lis.epfl.ch/,
Distributed Robotics Lab of MIT:
http://groups.csail.mit.edu/drl/wiki/index.php/,
or the web-page of the Swarm-bots
Project: http://www.swarm-bots.org/ and

http://www.swarm-robotics.org/index.php/), just
to mention a few. For a more engineering viewpoint of
the topic, see also (Eberhart et al., 2001).

V. MODELING ACTUAL SYSTEMS

A. Systems involving physical and chemical interactions

1. The effects of the medium

In the case of microorganisms swimming in a medium,
the hydrodynamic effects are often significant enough
to generate collective motion passively, that is, various
coherent structures (e.g., clusters, vortices, etc.) arise
merely as a result of hydrodynamic interactions. Getting
wise to this fact, Hatwalne et al. (2004) and Simha and
Ramaswamy (2002) constructed hydrodynamic equations
for suspensions of SPPs suitable for making testable pre-
dictions for systems consisting of bacteria, cells with mo-
tors or artificial machines moving in a fluid. Saintillan
and Shelley (2007) studied numerically the dynamics and
orientational order of self-propelled slender rods using the
so called slender-body theory, a method used to obtain
an approximation to the field surrounding a slender ob-
ject and to get an estimation for the net effect of the
field on the body (Batchelor, 1970; Cox, 1970). They
found local nematic ordering over short length scales as
well having a significant impact on the mean swimming
speed. Sankararaman and Ramaswamy (2009) showed
that polar self-propelled particles were prone to exhibit
various types of instabilities through the interplay of po-
larity, activity and the existence of a free surface, by using
a thin-film hydrodynamic model.

The motion of the fluid generated by the particles
swimming in it seems to depend strongly on the way
these organisms propel themselves (Lauga and Powers,
2009). Underhill et al. (2008) simulated pushers (or-
ganisms propelled from the rear, like most bacteria) and
pullers (creatures that are propelled at the head of the
organism) separately to capture the differences in the ef-
fects of the forces these creatures exert on the fluid while
swimming in it. Figure 41 shows the scheme of their
self-propelled swimmers. Each of them consists of two
beads connected by a rod. They propel themselves by
a “phantom flagellum”. (“Phantom”, because its phys-
ical appearance is not taken care of, only its effect on
the swimmer and on the fluid.) It exerts an Ff force on
bead 1, and −Ff force on the fluid. Pushers and pullers
are distinguished by the direction of Ff : if it points from
bead 1 to bead 2, then it is a pusher, and if it points in
the opposite direction, then it is a puller. The motion
of the particles is calculated by solving the force balance
for each bead, as given by Eq. (45):

Ff + Fh1 + Fc1 + Fe1 = 0, (45)
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FIG. 41 (Color online) The scheme of a pusher and the fluid
disturbance it causes. Each SPP is represented by two spheres
connected by a rod. The propulsion is provided by a “phan-
tom flagellum” (“phantom”, because it is not treated explic-
itly, only through the effect it exerts to the swimming body
and to the fluid.) The force exerted by this flagellum acts
at the center of the first sphere. A puller produces the same
streamlines (dark gray curves) but the arrows point in the
opposite direction. From Underhill et al. (2008).

where Fc1 is the force exerted by the rod (connecting
the two beads), Fh1 is the hydrodynamic drag force and
Fe1 is the excluded volume force on the bead. The force
balance defining the motion of bead 2 is the same as Eq.
(45), but without the Ff flagellum force.

Using this model, Underhill et al. (2008) observed qual-
itative differences between the effects of pushers and
pullers, exerted on the fluid they move in: SPPs that
are pushed from the behind show greater enhancement
than particles that are pulled from the front. This model
– supported by Mehandia and Nott (2008) as well –
describes the far-field behavior of interacting swimming
particles.

The notion of “squirmer” has also been introduced
in order to apprehend the most important features of
swimming microorganisms (with respect to their motion
in a fluid) (Lighthill, 1952). These are neutrally buoy-
ant squirming spheres with a tangential surface velocity
and with anisotropic structures, that is, their center of
mass and geometric center do not necessarily coincide
(Ishikawa and Pedley, 2008). The surface velocity, u⃗S , of
such squirmers is analyzed by Blake (1971) in detail and
is given in the form of

u⃗S =
2∑

n=1

2

n(n+ 1)
Bn

(
e⃗ · r⃗
r

r⃗

r
− e⃗

)
P ′
n(e⃗ · r⃗/r), (46)

where r⃗ is the position vector, r = |r⃗|, e⃗ is the orienta-
tion vector of the squirmer, Bn is the nth mode of the
surface squirming velocity and Pn is the nth Legendre
polynomial.

A solitary squirmer moves with the speed 2B1/3. Let
β be the ratio of the second mode squirming to the first

mode: β = B2/B1. Positive β denotes pullers, and neg-
ative β describes pushers.

At the same time, the Stokesian dynamics – a tech-
nique used for solving the Langevin equation – can also
be applied in this case (Brady and Bossis, 1988; Brady
et al., 1988). According to Ishikawa et al. (2008), the

force F⃗ , the torque L⃗ and the stresslet S⃗ balances for the
squirmers can be calculated as

 F⃗

L⃗

S⃗

 =
[
R⃗far − R⃗far

2B + R⃗near
2B

] U⃗ − ⟨u⃗⟩
Ω⃗− ⟨ω⃗⟩
−
⟨
E⃗
⟩

+

+
[
R⃗far − R⃗far

2B

] −2
3B1e⃗+ Q⃗sq

0

−1
5B2(3e⃗e⃗− I⃗)

+

 F⃗near
sq

L⃗near
sq

S⃗near
sq

 ,

(47)

where the indices “far” and “near” denote far- and near-
field interaction, respectively, R⃗ denotes the resistance
matrix, U⃗ is the translational and Ω⃗ is the rotational
velocity of a squirmer. ⟨u⃗⟩ and ⟨ω⟩ are the bulk suspen-

sion’s translational and rotational velocity, and
⟨
E⃗
⟩

is

the rate of its strain tensor. 2B in the index indicates
interaction between two inert spheres and sq means in-
teraction between two squirmers.

Using Eqs. (46) and (47), Ishikawa and Pedley (2008)
simulated the motion of squirmers in a monolayer, and
demonstrated that various types of processes resulting in
coherent structures (such as aggregation, band formation
or mesoscale spatio-temporal motion) can be generated
by pure hydrodynamic interactions. Accordingly, Fig. 42
shows the velocity correlation function among the parti-
cles IU = IU (r), as a function of the distance r separating
the squirmers. ca is the areal fraction of the particles in
the monolayer, thus it refers to their sizes: bigger ca de-
notes larger sphere.

Importantly, similar simulations carried out for three-
dimensional suspension (that is, when the particles are
not restricted to move on a monolayer) do not show such
vigorous coherent structures (Ishikawa et al., 2008).

An interesting example of collective motion is the syn-
chronized beating of flagella on the surface of unicellu-
lar, or simple multicellular organisms. It was shown that
such a coherent motion of flagella leads to a highly in-
creased exchange rate of the nutrients around such or-
ganisms (Short et al., 2006).

2. The role of adhesion

The problem regarding the mechanisms determining
tissue movements dates back to the beginning of the 20th
century. In 1907 Wilson discovered that sponge cells
which have been previously squeezed through a mesh of
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FIG. 42 The velocity correlation function among the particles
(IU ) as a function of the distance among the units r for three
different sphere-sizes. In the region r < 6, IU is positive, de-
noting that nearby particles tend to swim together in similar
direction. In the region r > 10, the correlation turns into
anti-correlation, since IU is negative, meaning that squirm-
ers at least 10 radii apart tend to swim in opposite direction.
From Ishikawa and Pedley (2008).

fine bolting-cloth are able to reunite again reconstitut-
ing themselves into a functioning sponge (Wilson, 1907).
Early studies mainly envisioned cell sorting as a resultant
of inhomogeneities (for example of pressure) in the im-
mediate environment. Since then many theoretical and
experimental studies have been dedicated to this ques-
tion supporting the idea that the movements are due to
intrinsic properties of the individual tissues themselves
(landmarked by, among many others Wilson and Penney
(1930), Bronsted (1936), Weiss (1941), Moscana (1952),
Trinkaus and Groves (1955), Weiss and Taylor (1960)).

To explain the phenomenon of cell sorting, Steinberg
(1963) developed the hypothesis that the local rearrange-
ment behavior (characterizing cells during the process
of sorting out and tissue reconstruction) follows directly
from their motility and quantitative differences in adhe-
siveness. (This theory is often referred to as “differential
adhesion hypothesis”, DAH). Based on the basic ideas
of DAH, Belmonte et al. (2008) introduced a simple self-
propelled particle model to study cell sorting (see Sec.
V.B).

Regarding the collective motion and phase transition
observed in migrating keratocyte cells (cells taken from
the scales of goldfish), Szabó et al. (2006) constructed
a model describing their experimental observations (see
also Sec. II.C). Using long-term videomicroscopy they
observed kinetic phase transition from disordered to or-
dered state, taking place as the cell density exceeds a rel-
atively well-defined critical value. Short-range attractive-
repulsive inter-cellular forces are suggested to account for
the organization of the motile keratocyte cells into coher-
ent groups.

FIG. 43 Computer simulations obtained by solving Eqs. (48)
and (49) for different particle densities. In agreement with the
observations, the model exhibit a continuous phase transition
from disordered to ordered phase. From Szabó et al. (2006).

Instead of applying an explicit averaging rule (which
would not be realistic), the model-cells (self-propelled
particles) adjust their direction toward the direction of
the net-force acting on them (see Eq. (48)). In this
two-dimensional flocking model, N SPPs move with a
constant speed v0 and mobility µ in the direction of
the unit vector n⃗i(t) while the i and j particles expe-

riences the inter-cellular force F⃗ (r⃗ir⃗j). The motion of
cell i(∈ 1, . . . , N) in the position r⃗i(t) is described by

dr⃗i(t)

dt
= v0n⃗i(t) + µ

N∑
j=1

F⃗ (r⃗ir⃗j). (48)

The direction n⃗i(t) can be described by θni (t) as well,
which attempts to relax to v⃗i(t) = dr⃗i(t)/dt within a
relaxation time τ . Denoting the noise by ξ and the unit
vector orthogonal to the plane of motion by e⃗z,

dθni (t)

dt
=

1

τ
arcsin

[(
n⃗i(t)

v⃗i(t)

|v⃗i(t)|

)
· e⃗z

]
+ ξ (49)

Figure 43 shows the typical simulation results obtained
by solving Eqs. (48) and (49) with periodic boundary
conditions. The model – in good agreement with the ob-
servations – exhibit a continuous phase transition from
disordered to ordered phase. (For the corresponding ob-
servations see also Fig. 15 in Sec. II.C.)

Some authors put big emphasis on the actual shape and
plasticity of the cells as well, since these properties also
play an important role in the emergent behavior of the
system (Glazier and Graner, 1993; Graner and Glazier,
1992; Maree and Hogeweg, 2001; Savill and Hogeweg,
1997). Following this line, Rappel et al. (1999) sug-
gested a model consisting of self-propelled deformable ob-
jects to explain their experimental results on the dynam-
ics of Dictyostelium discoideum (see also in Sec. II.C).
Their model reproduces the observed self-organized vor-
tex states (the “pancake”-structures), as the resultants of
the coupling between the self-generated propulsive force
and the cell’s configuration, and of the cohesive energy
between the cells.

In a nice paper, the dynamics of sprouting during vas-
culogenesis is described by an interacting particle model
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(Czirók et al., 2008).

3. Swarming bacteria

By using models and simulations, experimentally ob-
served behaviors which are seemingly unintelligible might
also be elucidated. Recently, as described in Sec. II.B,
bacteria belonging to Myxococcus xanthus swarms were
observed to reverse their gliding directions regularly,
while the colony itself expanded (Wu et al., 2009). To
compass this seemingly energy-wasting behavior, the au-
thors simulated the observed phenomena using a cell-
based model, taking into account only the contact-
mediated, local interactions (Wu et al., 2007). The in-
dividual cells are represented by a flexible string of N
nodes, consisting of N − 1 segments, as depicted on Fig.
44 (basically a bendable rod, bended in N − 2 points,
being able to move in 2-D space). Each segment has
the same length r. In the simulations N was chosen to
be 3, thus each cell had two segments, as the rod was
blended in one point, in the middle. The orientations of
the cells are defined by the vectors directed from the tail
nodes to the head nodes. In order to keep the shapes of
the cells within an interval that agrees with the observa-
tions, a Hamiltonian function was defined to characterize
the certain node-configurations, as given by Eq. (50).

H =
N−1∑
i=0

Kb(ri − r0)
2 +

N−2∑
i=0

Kθθ
2
i , (50)

where ri is the length of the ith segment, r0 is its “target
length” and θi is the angle enclosed by the neighboring
segments i and i + 1. Kb and Kθ are the stretching
and the bending coefficients, respectively, defining the
extent to which the length of the segments and the angles
between them can vary. Both of them are dimensionless
values, and are the same for all the segments and angles.
Regarding the active motion of the certain cells, first

the head-node moves in a particular direction, followed
by the other nodes which take positions so that the
Hamiltonian function belonging to the new configuration
is minimal. Since according to the observations, Myxo-
coccus xanthus cells do not have any kind of long-range
communicating systems (Kaiser, 2003), the model takes
the interactions only among neighboring cells into ac-
count.
The experimentally observed reversals (sudden

changes in the direction with 180o) are most probably
regulated by an internal biochemical clock, which is
independent of the actual interactions of the given cell.
Therefore, the model takes into account these reversals
by simply switching the roles of the head-nodes and the
tail-nodes, according to an internal clock.
Simulations based on the above model did not result

in swarming of the non-reversing cells in contrast to the

FIG. 44 Each cell is represented by a string of N nodes. In
the simulations N = 3, thus the cells consist of two segments,
enclosing the angle θ. The orientation is defined by the vector
directed from the tail node to the head node. From Wu et al.
(2007).

FIG. 45 Simulational results of the bacteria motion and pat-
tern formation deep inside the colony. (a) In the initial setup
the cells are randomly distributed. (b) The inner area of the
colony after 3 h of evolution. Adapted from Wu et al. (2007).

simpler models by Peruani et al. (2006) and Ginelli et al.
(2010). On the other hand, it was found that the expan-
sion rate of the colony depends on the length of the re-
versal period. Notably, the biggest expansion is obtained
within the same time-period that was experimentally ob-
served, that is ≈ 8 min. The cellular motion and the
emerged patterns deep inside the colony was also mod-
eled. As it can bee seen on Fig. 45, the considered social
interactions result an enhanced order regarding the col-
lective cellular motion. It should be noted, that in a
very recent preprint Peruani et al. (2010) found signs of
both ordering and clustering in experiments with a non-
reversing, genetically modified mutant of a myxobactera
strain.

One of the earliest works on the collective motion of
bacteria pointing out the reason why such models are im-
portant, is done by Czirók et al. (1996). The authors em-
phasized that the study of bacterial colonies can lead to
interesting insights into the functioning of self-organized
biological systems which rest on complex networks of reg-
ulation systems, since these are perhaps the simplest liv-
ing systems exhibiting collective behavior, governed by
interactions that are simple enough to be captured by
mathematical tools.

In this paper the authors, on the one hand, reported
on their experiments with Bacillus subtilis (see also Sec.
II.B and Fig. 8) and on the other hand introduced a step-
by-step elaborated model, which is capable to describe
the increasingly elaborated complex collective behavior.
The simplest expression describes the collective migration
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of the cells, which move with a fixed-magnitude velocity
v in the direction characterized by ϑ, according to Eq.
(51)

dϑi

dt
=

1

τ

[
⟨ϑ(t)⟩i,ϵ − ϑi(t)

]
+ ζ (51)

where ϑi(t) is the direction of the ith bacterium at time
t, τ is the relaxation time, which is related to the bacte-
rial length to width ratio (the interaction is stronger for
longer bacteria), and ζ indicates an uncorrelated noise.
The term ⟨ϑ(t)⟩i,ϵ represents the average direction of the
cells in the neighborhood of particle i, in the radius ϵ.
For the simulations, a more simple, time-discretized

form of Eq. (51) was used (Eq. 13), which is valid if the
rotational relaxation time is fast compared to the change
of the locations, that is, if τ << v−1/

√
ρ̄. (ρ̄ denotes the

average bacterium density.)
Eq. (13) can be interpreted as a “starting-point” which

is to be refined according to the specific systems. Here
the noise takes values from the interval [−η/2, η/2] ran-
domly, with uniform distribution. The xi positions of
particle i is updated in each time-step according to Eq.
(14).
Modifying the above model to be more system-specific,

two changes were introduced: (i) the periodic boundary
conditions were replaced with reflective circular walls,
and (ii) a short-range “hard-core” repulsion was intro-
duced, in order to prevent the cells to aggregate in a
narrow zone. In other words, if the distance among cells
decrease under a certain value ϵ∗, then these cells will
repel each other, and their direction of motion will be
given by

ϑi(t+∆t) = Φ

−
∑

j ̸=i,|x⃗j−x⃗i<ϵ∗|

N⃗ (x⃗j(t)− x⃗i(t))

 ,

(52)
where Φ(r⃗) gives the angle ϑ between its argument vector
and a predefined direction (for example the x axis), and

N⃗ = u⃗/|u⃗|. Simulations with low noise and high density
show correlated rotational motion (see Fig. 46), in which
the direction of the vortices can be either clockwise or
anti-clockwise, as it is selected by spontaneous symmetry
breaking.
The above constraint (reflective circular wall) is an ex-

ternally imposed coercion to the bacterium colony. At
the same time, in real colonies vortices often can be ob-
served far from the boundaries as well, thus the confine-
ment of the bacteria must be the resultant of some kind
of interactions among the cells. Accordingly, the model
can be further elaborated by adding “chemoattractants”
to the system, which are interpreted in a broad sense:
they can be reactions on “passive” physical forces as
well (like surface tension, efficiency of the flagella-motors)
which depend on the deposited extracellular slime. Cells

FIG. 46 A stationary state of the system characterized by
short-range repulsion among the cells (defined by Eq. (52))
using reflective circular walls. From Czirók et al. (1996).

slightly alter their propulsion forces according to the lo-
cal concentration of the attractant, which results in a
torque acting on the colony. To simulate the system that
includes the above introduced attractants, the concentra-
tion field, cA (describing the concentration level of the
secreted chemoattractants in each point of the field) is
discretized by a hexagonal lattice (see Fig. 47). Suppos-
ing that a group of bacteria, a “raft”, is held together
by intercellular bonds, it can be treated as a rigid body
of size d. In this case, the velocity difference ∆v at the
opposite sides of the raft, in a linear approximation, is
proportional to that component of ∇cA which is orthog-
onal the velocity v⃗:

∆v ∼ d

v
|v⃗ × ∇⃗cA|. (53)

By neglecting the convective transport caused by the
motion of bacteria, the chemoattractant field’s time evo-
lution can be written as

∂cA
∂t

= DA∇2cA + ΓAρ− λAcA, (54)

λA is the constant rate of the decay, ρ denotes the local
density (number of particles in a unit area) and ΓA is
the rate by which bacteria produce the chemoattractant
material. The first term represents the diffusion.

Figure 48 depicts a typical snapshot of the simulations.
The secretion of chemoattractants is a process with posi-
tive feedback effect, which breaks down the originally ho-
mogeneous particle distribution and results denser clus-
ters in sparser regions.

According to the experiments (Dombrowski et al.,
2004; Mendelson et al., 1999), dense colonies of Bacil-
lus subtilis exhibit surprising behavior as well: in regions
of high bacterium concentration (having at least 109 cells
per cm3) transient jet-like patterns and vortices appear,
which latter ones persist for timescales of ≈ 1s. The
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FIG. 47 The discretized concentration field: a hexagonal lat-
tice defined by the lattice vectors e⃗1, e⃗2, . . . , e⃗6. The open cir-
cles in the middle of the hexagons are those points where the
concentration level of the diffusing chemoattractants are cal-
culated at each time-step. The thick line shows the boundary
of the system, which reflects the particles (filled dots) which
can move off-lattice. To define the average direction ⟨v⃗⟩i,ϵ for
the bacterium i in lattice-cell A, the averaging involves all the
particles in cells A−G. From Czirók et al. (1996).

FIG. 48 Typical vortices formed by the model involving
chemoattractants. The originally homogeneous particle dis-
tribution is destroyed by the positive feedback effect of the
attractants. Arrows show the coarse grained velocity of the
bacteria, while the corresponding distribution of the chemoat-
tractant concentration is depicted in the upper left corner.
From Czirók et al. (1996).

speed of the observed jets are typically larger than that of
the individual bacteria. To elucidate these observations,
Wolgemuth (2008) developed a two-phase model in which
the fluid and the bacteria were modeled by two indepen-
dent, but interpenetrating continuum phases. Since their
propulsive motors (the flagella) do not act on the center
of mass, the rod-shaped bacteria exert a dipole force on
the fluid. For reasonable parameter-values, the model (a

FIG. 49 (Color online) Four snapshots of the model repro-
ducing the onset of the experimentally observed jets and vor-
tices. The color map indicates the bacterial volume fraction,
and the little arrows denote the fluid velocity field. According
to the initial conditions (t = 0), the bacteria are distributed
uniformly and the fluid velocity field is directed (with a small
random perturbation) along the x axis. From Wolgemuth
(2008).

system of partial differential equations) reproduces the
observed behavior accurately. Figure 49 represents the
onset of the observed turbulent behavior with the jets
and vortices.

The interaction between these organisms under simi-
lar circumstances (namely, closely packed populations of
Bacillus subtilis) with one other and with the boundaries
(walls) is in the focus of Cisneros et al. (2007). Their
model swimmer consist of a sphere (which is the “body”
of the cell) and a cylinder representing the rotating bun-
dle of helical flagella (see Fig. 50). The occurrence of the
turbulent states at small Reynolds numbers (at Re << 1)
is explained by the energy that the bacteria insert into
the fluid as they swim in it.

Czirók et al. (2001) used coupled differential equations
to describe experimentally observed patterns of bacterial
colonies. With such a method, they captured the peri-
odic growth of Proteus mirabilis colonies (see Fig. 12 in
Sec. II.B). Volfson et al. (2008) emphasized the role of
bio-mechanical interactions arising from the growth and
division of the cells (see also Fig. 13 in Sec. II.B), and de-
veloped a continuum model based on equations for local
cell density, velocity and the tensor order parameter.
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FIG. 50 (Color online) Streamlines of the fluid velocity field
surrounding a group of five bacterium near to the walls. As
it can be seen, there is little front-to-end penetration of the
fluid into the group. Remarkably – as the authors point it
out – this circumstance can lead to the split-up of a group
because, as it follows, the oxygen supply for the organisms
within a phalanx consisting of many bacteria will be insuffi-
cient, thus the inner cells will alter their velocity according
to the gradient of oxygen concentration. From Cisneros et al.
(2007).

B. Models with segregating units

Cell sorting denotes a special type of collective mo-
tion during which an originally heterogeneous mixture
of cells segregate into two (or more) homogeneous cell-
clusters without any kind of external field. This can be
observed, for example, during the development of organs
in an embryo or during regeneration after tissue dissocia-
tion. To simulate this phenomena, Belmonte et al. (2008)
considered two kinds of cells, differing in their interaction
intensities. According to the model, N particles move in
a two-dimensional space with constant v0 velocity. The
velocity and the angle of the orientation of particle n at
time t is denoted by v⃗tn and θtn, respectively. The new
orientation θt+1

n of particle n is

θt+1
n = arg

[∑
m

(
αnm

v⃗tm
v0

+ βnmf t
nme⃗tnm

)
+ u⃗t

n

]
, (55)

where the summation refers to those particles (m) which
are within a radius r0. These ‘cells’ exert a force f t

nme⃗tnm
on n, along the direction e⃗tnm. The noise is taken into
account by u⃗t

n, which is a random unit vector with uni-
formly distributed orientation. αnm and βnm are the

FIG. 51 Cell sorting of 800 cells. The endodermic cells are
represented by black, and the ectodermic ones by gray circles,
respectively. (a) The initial cluster with mixed cell types. (b)
the cluster after 3000 time step, and (c) is taken at t = 3×105.
Clusters of endodermic cells form and grow as time passes
by. (d) t = 2 × 106. A single endodermic cluster is formed,
but some isolated cells remain within the ectoderm tissue, in
agreement with the experiments of Rieu et al. (1998). From
Belmonte et al. (2008)

control parameters: α controls the relative weights of
the alignment interaction, and β shows the strength of
the radial two-body forces fnm, which is defined as

fnm =


∞ if rnm < rc,
1− rnm

re
if rc < rnm < r0,

0 if rnm > r0,
(56)

that is, for distances smaller than a core radius rc, it is a
strong repulsive force, around the equilibrium radius re
it is a harmonic-like interaction, and for distances big-
ger than the interaction range r0 it is set to zero. For
modeling the observations regarding Hydra cells (Rieu
et al., 2000), the authors defined two kinds of particles,
“endodermic” and “ectodermic”, denoted by 1 and 2, re-
spectively. Accordingly, β11 and β22 stand for the cell
cohesion within the two cell-types, while β12 and β21 ac-
count for the inter-cell -type interactions. These latter
ones are assumed to be symmetric, that is, β12 = β21.
For the sake of simplicity, all the cells have the same α
value. Figure 51 shows how a group of 800 cells evolve
in time. The proportion is 1:3 of endodermic (black) to
ectodermic (gray) cells, and α=0.01.

Segregation occurs in various 3D systems as well, such
as in flocks of birds or schools of fish. Mostly, models
assume identical particles to simulate collective motion.
At the same time, those simulations which suppose di-
verse particles, exhibit sorting (Couzin and Krause, 2003;
Romey, 1996). This means that behavioral and/or mo-
tivational differences among animals effect the structure
of the group, since individuals change their positions rel-
ative to the others according to their actual inner state.
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This involves that if the individual variations are per-
sistent then the group will reassemble to its’ original
state after perturbations (Couzin et al., 2002). The sort-
ing phenomenon depends primarily on the relative differ-
ences among the units.
In a similar spirit, Vabø and Skaret (2008) showed that

differences in themotivational level can cause segregation
within a school of spawning herrings. They used an in-
dividual based model in which the parameters describing
the states of the individuals were varied and they mea-
sured a range of parameters at system level. The motion
of each individual was determined by the combination
of five behavioral rules: (1) avoid boundaries, (2) social
attraction, (3) social repulsion, (4) move towards the bot-
tom to spawn and (5) avoid predation. The motivational
level was controlled by a parameter. To capture how the
system as a whole reacts on changes in the individual
level, various metrics were recorded, like the size and age
of the school, its’ vertical and horizontal extension, etc.
By varying the size of the population and the level of the
motivational synchronization, different systems emerged
regarding its morphology and dynamics. Similar motiva-
tional levels resulted in an integrated school, whereas di-
verse inner states produced a system with frequent split-
offs. More complex structure appeared by an intermedi-
ate degree of synchronization characterized by layers con-
nected with vertical cylindrical shaped schools (see Fig.
52) allowing ovulating and spent herring to move across
the layers, in agreement with the observations (Axelsen
et al., 2000). These findings suggest that the level of
motivational synchronization among fish determines the
unity of the school. Furthermore, this study also demon-
strates that larger populations can exhibit such emer-
gent behaviors that smaller ones can not (for example
the cylindrical bridges mentioned above).
More general simulations also support these results.

You et al. (2009) investigated the behavior of two-
component swarms, consisting of two different kinds of
particles, varying in their parameters, such as mass, self-
propelling strength or preferences for shelters. The units
– having different parameter-set – were observed to seg-
regated from each other.
Other experiments focus on the emergent patterns of

particles having different kinetic parameter settings (pre-
ferred speed, the range of perception in which a parti-
cle perceives the velocity vectors of other particles, etc.).
The study of Sayama et al. (2009) was prompted by an
in-class experiment aiming to test a new version of a soft-
ware called “Swarm Chemistry”,3 which is an interactive
evolutionary algorithm.
The software assumes that the particles move in an in-

finite two-dimensional space according to kinetic rules re-

3 it can be downloaded from the author’s website,
http://bingweb.binghamton.edu/˜sayama/SwarmChemistry/

FIG. 52 (Color online) Simulational results, in which the
motivational level of the individuals are taken into account.
Large herring populations with small motivational synchro-
nization tend to form multi-layered schools in which the layers
are connected by cylindrical shaped “bridges”. The motiva-
tional level depends primarily on the age of the fish: mature
herrings are denoted with yellow color (online), ovulating ones
are orange to red, spawning individuals are black and white
color registers spent herring. Adapted from Vabø and Skaret
(2008).

sembling to the ones introduced by Reynolds (1987) (see
Sec. IV.A). The strength of these kinetic rules, as well as
the preferred speed and the local perception range, differ
from particle to particle. Those units that (accidentally)
share the same parameter-set, are considered to be of
the same type. Some snapshots of the emergent dynamic
patterns that these particles produce with their various
parameter-sets, can be seen on Fig. 53.

According to the simulations, these mixtures of mul-
tiple type units usually spontaneously undergo to some
kind of segregation process, often accompanied by the
appearance of multilayer structures. Furthermore, the
formed clusters may exhibit various dynamic macroscopic
behaviors, such as oscillation, rotation or linear motion.

Interestingly, simulations of hunting showed segrega-
tion as well (Kamimura and Ohira, 2010). Here the two
kinds of particles were the chasers (or predators) and the
targets (or preys) which differed in their behavior.

C. Models inspired by animal behavioral patterns

1. Insects

Insects are one of the most diverse animal groups on
Earth including more than a million described species
which makes them represent more than half of all known
living organisms (Chapman, 2009). Insects typically
move on the ground or fly, or occasionally sink and swim
in the water. Some of their species (like water striders)
are even able to walk on the surface of water. Most of
them live solitary life, but some insects (such as certain
ants, bees or termites) are social and are famous of their
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FIG. 53 (Color online) Some snapshots of the emer-
gent patterns that particles with different parameter-
set (preferred speed, range of perception and
strength of the kinetic rules) can produce. From
http://bingweb.binghamton.edu/~sayama/SwarmChemistry/

#recipes.

large and well-organized colonies. The scope of this re-
view does not cover the models aiming to describe the
intricate behavior of insect societies, here we discuss only
two models which are more closely related to collective
motion. As mentioned in Sec. II.D, Mormon crickets
and Desert locusts tend to exhibit cannibalistic behavior
in case of the depletion of nutritional resources (Bazazi
et al., 2008; Simpson et al., 2006).

Motivated by these observations, it can be shown that
individuals with escape and pursuit behavior-patterns
(which special kind of repulsive and attractive behav-
iors can be correlated with cannibalism) exhibit collective
motion. (Romanczuk et al., 2009). The escape reaction
is triggered in an individual if it is approached from be-
hind by another one; in this case the escaping animal
increases its velocity in order to prevent being attacked
from behind. In contrast, if the insect perceives one of
its mates moving away, it increases its velocity in the
direction of the escaping one; this is the pursuit behav-
ior. Other cases do not trigger any response. According
to the simulations, at moderate noise intensity and high
particle density, these interactions (pursuit and escape)
lead to global collective motion, irrespective of the de-
tailed model parameters (see Fig. 54). Both interaction-
types lead to collective motion, but with an opposite ef-
fect on the density distribution. Whereas pursuit leads
to density-inhomogeneities (that is, to the appearance of
clusters, as it can be seen on the first column on Fig. 54),
escape calls to forth homogenization. Thus, the collec-

FIG. 54 The global collective motion emerging from escape
and pursuit behaviors. ρs is the rescaled density, which is
defined as ρs = Nl2s/L

2, where N is the total number of the
individuals, ls is their interaction range and L is the size of
the simulation field. The simulations were carried out by us-
ing periodic boundary conditions. The column denoted by p
shows the typical spatial configurations for the pursuit-only
case, e for the escape-only case, and p+ e when both interac-
tions are present. The large arrows indicate the direction and
speed of the mean migration. As it can be seen on the top
row, at low rescaled densities the emergent patterns strongly
vary according to the strength of the escape and pursuit in-
teractions. From Romanczuk et al. (2009).

tive dynamic in which both behavior-types are present,
is a competition between the two opposite effects.

Another often observed phenomena regarding collec-
tive locust motion, is their sudden, coherent switches in
the direction of motion. Yates et al. (2009) suggested
to use Fokker-Plank equations in order to describe these
observations. They found a seemingly counterintuitive
result, namely that the individual locusts increased their
motional randomness as a reaction for a loss of align-
ment in the group. This reaction thought to facilitate
the group to find a highly aligned state again. They also
found that the mean switching time increased exponen-
tially with the number of individuals.

2. Moving in three dimensions – fish and birds

The main goal of the first system-specific models aim-
ing to simulate the motion of animals moving in 3 di-
mensions (primarily birds and fish) was to produce re-
alistically looking collective motion (Reynolds, 1987), to
give system-specific models taking into account many pa-
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rameters (McFarland and Okubo, 1997), or to create sys-
tems in which some characteristics (for example nearest
neighbor distance or density) resembles to an actual bi-
ological system (Huth and Wissel, 1994). Later various
other aspects and features were also studied, such as the
function and mechanism of line versus cluster formation
in bird flocks (Bajec and Heppner, 2009), how the fish
size and kinship correlates with the spatial characteris-
tics (e.g., animal density) of fish schools (Hemelrijk and
Kunz, 2005), the cohort departure of bird flocks (Hepp-
ner, 1997), the collective behavior in an ecological context
(in which not only the external stimuli, but the internal
state of the individuals are also taken into account) (Vabø
and Skaret, 2008), or the effect of perceived threat (Bode
et al., 2010). This latter circumstance was taken into ac-
count by relating it to higher updating frequency, and it
resulted a more synchronized group regarding its speed
and nearest neighbour distribution. The book of Parrish
and Hamner (1997) provides an excellent review on this
topic.

Models proposed by biologists tend to take into ac-
count many of the biological details of the modeled an-
imals. A good example for this kind of approach is the
very interesting work of Heppner and Grenander (1990),
who proposed a system of stochastic differential equa-
tions with 15 parameters. Huth and Wissel (1992) used
a similar approach for schools of fish. Some other models
included a more realistic representation of body size and
shape (Kunz and Hemelrijk, 2003).

Regarding the methodology of most of the simulations,
the agent-based (or individual-based) approach proved
to be very popular (although there are alternative ap-
proaches as well, e.g., Hayakawa (2010)). The reason
behind this is that this approach provides a link between
the behavior of the individuals and the emergent proper-
ties of the swarm as a whole, thus appropriate to inves-
tigate how the properties of the system depend on the
actual behavior of the individuals. The most common
rules applied in these models are (i) short-range repul-
sive force aiming to avoid collision with mates and with
the borders (ii) adjusting the velocity vector according to
the direction of the neighboring units (iii) a force avoid-
ing being alone, e.g., moving towards the center of the
swarm’s mass (iv) noise (v) some kind of drag force if
the medium is considered in which the individuals move
( – which is usually not taken into account, in case of
birds and fish). Then, the concrete models differ in the
rules they apply (usually most of the above ones), in their
concrete form and in the system parameters.

Some biologically more realistic, yet still simple
individual-based models were also suggested (Couzin
et al., 2002; Hemelrijk and Hildenbrandt, 2008). By us-
ing such a model, Couzin et al. (2002) categorized the
emergent collective motions as the function of the sys-
tem parameters. In this framework, the individuals obey
to the following basic rules: (i) they continually attempt

FIG. 55 The interaction zones, centered around each indi-
vidual. The inner-most sphere with radius Rr is the zone of
repulsion (“zor”). If others enter this zone, the individual will
response by moving away from them into the opposite direc-
tion, that is, it will head towards −

∑nr
j ̸=i(r⃗j − r⃗i)/|r⃗j − r⃗i|,

where nr in the number if individuals being in the zor. The
interpretation of this zone is to maintain a personal space
and to ensure the avoidance of collisions. The second annu-
lus, “zoo”, represents the zone of orientation. If no mates are
in the ‘zor’, the individual aligns itself with neighbors within
this ‘zoo’ region. The outermost annulus, “zoa”, is the zone
of attraction. The interpretation of this region is that group-
living individuals continually attempt to join a group and to
avoid being alone or in the periphery. From Couzin et al.
(2002).

to maintain a certain distance among themselves and
their mates, (ii) if they are not performing an avoid-
ance manoeuvre (described by rule i), then they are at-
tracted towards their mates, and (iii) they align their
direction to their neighbors. Their perception zone (in
which they interact with the others) is divided into three
non-overlapping regions, as illustrated in Fig. 55. The
radius of these spheres (zone of repulsion, zone of ori-
entation and zone of attraction) are Rr, Ro and Ra, re-
spectively. Thus, the width of the two outer annulus are
∆Ro = Ro − Rr and ∆Ra = Ra − Ro. α denotes the
field of perception, thus, the “blind volume” is behind
the individual, with interior angle (360− α).

In order to explore the global system behavior, the au-
thors analyzed the consequences of varying certain sys-
tem parameters, like the number of individuals, preferred
speed, turning rate, width of the zones, etc. For every
case, the following two global properties were calculated:

φ(t) =
1

N

∣∣∣∣∣
N∑
i=1

v⃗ui (t)

∣∣∣∣∣ , (57)

where N is the number of individuals within the group,
(i = 1, 2, . . . , N), and v⃗ui (t) is the unit direction vector

of the ith animal at time t. (Since v⃗ui (t) is a unit vector,
the expression defined by Eq. (57) is equivalent with the
order parameter defined by Eq. (1).)
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The other measure, group angular momentum, is the
sum of the angular momenta of the group-members about
the center of the group, r⃗Gr. This expression measures
the degree of rotation of the group about its center

mGr(t) =
1

N

∣∣∣∣∣
N∑
i=1

r⃗i−Gr(t)× v⃗ui (t)

∣∣∣∣∣ , (58)

where r⃗i−Gr = r⃗i − r⃗Gr, is the vectorial difference of the
position of individual i, r⃗i, and the position of the group-
center, r⃗Gr.

rGr(t) =
1

N

N∑
i=1

r⃗i(t) (59)

Figure 56 summarizes the four “basic types” of collec-
tive motions emerged according to the various parameter
setups.
“Swarm:” Both the order parameter (φ) and the an-

gular momentum (mGr) are small, which means little or
no parallel orientation. (Fig. 56, (a) sub-picture)
“Torus” or “milling”: Individuals rotate around an

empty core with a randomly chosen direction. The or-
der parameter (φ) is small, but the angular momentum
(mGr) is big. This occurs when ∆ra is big, but ∆ro is
small. (Fig. 56, (b) sub-picture)
“Dynamic parallel group:” Occurs at intermediate or

high values of ∆ra and intermediate values of ∆ro. This
formation is much more mobile than either of the pre-
vious ones. The order parameter (φ) is high but the
angular momentum (mGr) is small. (Fig. 56, (c) sub-
picture)
“Highly parallel group:” By increasing ∆ro, a highly

aligned formation emerges characterized by very high or-
der parameter (φ) and low angular momentum (mGr).
(Fig. 56, (d) sub-picture)
However, the approach of individual (or agent) based

modeling has its own limitations or “traps” – as pointed
out by Eriksson et al. (2009). Namely, that different
combinations of rules and parameters may provide the
same (or very similar) patterns and collective behaviors.
Accordingly, in order to prove that the emergent behav-
ior of a certain biological system obeys given principles,
it is not enough to provide a rule and a parameter set
(modeling these principles) and demonstrate that they
reproduce the observed behavior. (On the other hand,
Couzin et al. (2002) demonstrated that – vice versa – the
same rule and parameter set may result in different col-
lective behavior in the very same system, depending on
its recent past, “history”.) Furthermore, the weak pre-
dictive power (for example, regarding the rate at which
groups change their direction) of these models has to be
considered when their relevance is judged (Yates et al.,
2009).

FIG. 56 The “basic types” of collective motions exhibited by
the model, according to the various parameter setups. The
denominations are (a) swarm (b) torus (c) dynamic parallel
group (d) highly parallel group. Adapted from Couzin et al.
(2002).

D. The role of leadership in consensus finding

Animals traveling together have to develop a method
to make collective decisions regarding the places of for-
aging, resting and nesting sites, route of migration, etc.
By slightly modifying (typically extending) models (such
as the one described in Sec. V.C.2), a group of individ-
uals can get hold of such abilities. Accordingly, Couzin
et al. (2005) suggested a simple model in which individ-
uals were not required to know how many and which
individuals had information, they did not need to have a
signaling mechanism and no individual recognition was
required from the group members. The model looks as
follows:

N individuals compose the group. The position of the
ith particle is described by the vector r⃗i, and it is mov-
ing in the direction v⃗i. The group members endeavor
to continually maintain a minimum distance, α, among
themselves, by turning away from the neighbors j which
are within this range towards the opposite direction, de-
scribed by the desired direction d⃗i

d⃗i(t+∆t) = −
∑
j ̸=i

r⃗j(t)− r⃗i(t)

|r⃗j(t)− r⃗i(t)|
(60)

This rule has the highest priority. If there are no mates
within this range, than the individual will attempt to
align with those neighbors j, which are within the in-
teraction range ρ. If so, the desired direction is defined
as
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FIG. 57 (Color online) SPPs following simple rules can com-
pose systems in which a few informed individual is capable
to guide the entire group towards a preferred direction. The
accuracy of the group (following the rules given by Eqs. 60,
61 and 62) increases asymptotically as the portion of the in-
formed individuals increases. Adapted from Couzin et al.
(2005).

d⃗i(t+∆t) =
∑
j ̸=i

r⃗j(t)− r⃗i(t)

|r⃗j(t)− r⃗i(t)|
+
∑
j ̸=i

v⃗j(t)

|v⃗j(t)|
. (61)

We will use the corresponding unit vector, d̂i(t) =

d⃗i(t)/|d⃗i(t)|.
Until this point the algorithm is very similar to the one

described in Sec. V.C.2. In order to study the influence
of informed individuals, a portion of the group, p, is given
information about a preferred direction, described by the
unit vector g⃗. The rest of the group is naive, without any
preferred direction. Informed individuals balance their
social alignment and their preferred direction with the
weighting factor ω

d⃗i(t+∆t) =
d̂i(t+∆t) + ωg⃗i∣∣∣d̂i(t+∆t) + ωg⃗i

∣∣∣ . (62)

(ω can exceed 1; in this case the individual is influenced
more heavily by its own preferences than by its mates.)
The accuracy of the group (describing the quality of in-
formation transfer) is characterized by the normalized
angular deviation of the group direction around the pre-
ferred direction g⃗, similarly to the term given in Eq. 58.
The authors found that for fixed group size, the ac-

curacy increases asymptotically as the portion p of the
informed members increased, see Fig. 57. This means,
that the larger the group, the smaller the portion of in-
formed members is needed, in order to guide the group
towards a preferred direction.
However, informed individuals might also differ in their

preferred direction. If the number of individuals prefer-
ring one or another direction is equal, than the group di-
rection will depend on the degree to which these preferred

FIG. 58 (Color online) Collective group direction when two
groups of informed individuals differ in their preferences. The
vertical axis shows the degree of the most probable group mo-
tion. The first group (consisting of n1 informed individuals)
prefers the direction characterized by 0 degrees (dashed line),
while the second group (consisting of n2 informed individuals)
prefers a direction between 0− 180 degrees (horizontal axis).
The group consists of 100 individuals altogether, of which the
numbers of informed individuals are (a) n1 = n2 = 5, (b)
n1 = 6 and n2 = 5 (c) n1 = 6 and n2 = 4. Adapted from
Couzin et al. (2005).

directions differ from each other: if these preferences are
similar, than the group will go in the average preferred
direction of all informed individuals. As the differences
among the preferred directions increase, individuals start
to select randomly one or the another preferred direction.
If the number of informed individuals preferring a given
direction increases, the entire group will go into the di-
rection preferred by the majority even if that majority is
small (see Fig. 58).

Freeman and Biro (2009) extended this model by in-
cluding a “social importance factor”, h, describing the
strength of the effect of a given individual on the group
movement. That is, h varies with each agent, and the
higher this value is, the bigger influence the given unit
excerts on the group. Equation 61 is modified accord-
ingly

d⃗i(t+∆t) =
∑
j ̸=i

hj
r⃗j(t)− r⃗i(t)

|r⃗j(t)− r⃗i(t)|
+
∑
j ̸=i

hj
v⃗j(t)

|v⃗j(t)|
(63)

Importantly, these models show that leadership might
emerge from the information differences among group
members, that is, leadership can be transient and trans-
ferable. Other studies also support these results. (Quera
et al., 2010) used an other kind of rule-set by which they
agents moved, and observed the same: certain agents did
become leaders without anything in the rule-set or in the
initial conditions that would have prompted or predicted
it.

In addition, even more simple models can lead to con-
sensus decisions. For example, the severe quorum rule (in
which the probability that an individual follows a given
option, sharply increases when the number of other group
members making that very decision reaches a threshold)
resulted accurate group decisions as well (Sumpter et al.,
2008).

Despite of the many attempts, the research of “human
decision making” is still in its infancy. Castellano et al.
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(2009) give a nice review of the state of the art regarding
the physical and mathematical models which have been
proposed throughout the years, on this field.

VI. SUMMARY AND CONCLUSIONS

From the quickly growing number of exciting new pub-
lications on flocking we are tempted to conclude that col-
lective motion can be regarded as an emerging field on
the borderline of several scientific disciplines. Thus, it is
a multidisciplinary area with many applications, involv-
ing statistical physics, technology and branches of life
sciences. Because of the nature of the problem (treating
many similar entities) studies in this field make quan-
titative comparison with observations possible even for
living systems and there is a considerable potential for
constructing theoretical approaches.

The results we have presented support a deep anal-
ogy with equilibrium statistical physics. The essential
deviation from equilibrium is manifested in the “collision
rule”: since the absolute velocity of the particles is pre-
served and in most cases an alignment of the direction of
motion after interaction is preferred, the total momen-
tum increases both during individual collisions and, as a
result, gradually in the whole system of particles as well.

The observations we have discussed can be successfully
interpreted in terms of simple simulational models. Using
models based on simplified units (also called particles)
to simulate the collective behaviour of large ensembles
has a history in science, especially in statistical physics,
where originally particles represented atoms or molecules.
With the rapid increase of computing power and a grow-
ing appreciation for ‘understanding through simulations’,
models based on a plethora of complex interacting units,
nowadays widely called agents, have started to emerge.
Agents – even those that follow simple rules – are more
complex entities than particles because they have a goal
they intend to achieve in an optimal way (for example,
using as little amount of resources as possible).

As a rule, models of increasing complexity are bound to
be born in order to account for the interesting variants
of a fundamental process. However, there is a catch.
A really good model must both reproduce truly life-like
behaviour and be as simple as possible. If the model has
dozens of equations and rules, and correspondingly large
numbers of parameters, it is bound to be too specific and
rather like an ‘imitation’ than a model that captures the
few essential features of the process under study.

Thus, if a model is very simple, it is likely to be ap-
plicable to other phenomena for which the outcome is
dominated by the same few rules. On the other hand,
simplification comes with a price, and some of the ex-
citing details that distinguish different phenomena may
be lost. But anyone who is an enthusiastic viewer of
natural life movies knows that actual collective behav-

ior in nature typically involves sophisticated, occasionally
amazing techniques aimed at coordinating the actions of
the organisms to maximize success. The art of design-
ing models of reality is rooted in the best compromise
between oversimplification and including too many de-
tails (eventually preventing the location of the essential
features).

On the basis of the numerous observations and mod-
els/simulations we have discussed above, the following
conclusions can be made concerning the general features
of systems exhibiting collective motion

• Most patterns of collective motion are universal
(the same patterns occur in very different systems)

• Simple models can reproduce this behavior

• A simple noise term can account for numerous com-
plex deterministic factors

• Global ordering is due to non-conservation
of the momentum during individual colli-
sions/interactions of pairs of units

The universally occurring patterns can be divided into
a few classes of motion patterns

• disordered (particles moving in random directions)

• fully ordered (particles moving in the same direc-
tion)

• rotational (within a rectangular or circular area)

• critical (flocks of all sizes moving coherently in dif-
ferent directions. The whole system is very sensi-
tive to perturbations)

• quasi-long range velocity correlations and ripples

• Jamming

A few further, less widely occurring patterns are also
possible, for example in systems made of two or more
distinctively different types of units.

The following types of transitions between the above
collective motion classes are possible

• Continuous (second order, accompanied with large
fluctuations and algebraic scaling)

• Discontinuous (first order)

• No singularity in the level of directedness

• Jamming (transition to a state in which mobility is
highly restricted)

The above transitions usually take place as i) a func-
tion of density or ii) the changing magnitude of pertur-
bations the units are subject to. The role of noise is es-
sential; all systems are prone to be strongly influenced by
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perturbations. In some cases noise can have a paradoxical
effect and, e.g., facilitate ordering. This could be under-
stood, for example, as a result of perturbations driving
the system out from an inefficient deterministic regime
(particles moving along trajectories systematically (de-
terministically) avoiding each other) into a more efficient
one, characterized by an increased number of interac-
tions.

After reviewing the state of the art regarding collective
motion we think that some of the most exciting chal-
lenges in this still emerging field can be summarized as:
i) Additional, even more precise data about the positions
and velocities of the collectively moving units should be
obtained for establishing a well defined, quantitative set
of interaction rules typical for most of the flocks. ii) the
role of leadership in collective decision making should
be further explored. Is it hierarchical? Can a leadership-
driven decision-making mechanism be scalabe up to huge
group sizes? iii) The problem of a coherently moving,
self-organized flock of unmanned aerial vehicles is still
unsolved in spite of its very important potential appli-
cations, iv) and last, but far from being the least, the
question about the existence of some simple underlying
laws of nature (such as, e.g., the principles of thermody-
namics) that produce the whole variety of the observed
phenomena we discussed is still to be uncovered.

We have seen that using methods common in statis-
tical physics has been very useful for the quantitative
description of collective motion. Theories based on ap-
proaches borrowed fluid dynamics, data evaluation tech-
niques making use of correlations functions and many
particle simulations all have led to a deeper insight into
flocking phenomena. This is all in the spirit of going from
a qualitative to a more quantitative interpretation of the
observations: a widely preferred direction in life sciences
these days.

A quantitative frame for describing the behavior of a
system enables important, highly desirable features of
treating actual situations. For example, prediction of
the global displacement of huge schools of fish may have
direct economical advantages. Understanding the collec-
tive reaction of people to situations including panic may
lead to saving lives. Using computer models to simu-
late migration of birds or mammals can assist in pre-
serving biodiversity. The list of potential applications
is long, and is likely to get longer, especially if we take
into account the swiftly increasing interest in collective
robotics.
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Chaté, H., F. Ginelli, and R. Montagne (2006), Physical Re-
view Letters 96, 180602.

Cisneros, L. H., R. Cortez, C. Dombrowski, R. E. Goldstein,
and J. O. Kessler (2007), Experiments in Fluids 43, 737.

Conradt, L., and C. List (2009), Philosophical Transactions
of the Royal Society B – Biological Sciences 364, 719.

Conradt, L., and T. J. Roper (2003), Nature 421, 155.
Conradt, L., and T. J. Roper (2005), Trends in Ecology &

Evolution 20, 449.
Conradt, L., and T. J. Roper (2010), Behavioural Processes

84, 675.
Couzin, I. D., and N. R. Franks (2003), Proceedings of the

Royal Society of London, Series B 270, 139.
Couzin, I. D., and J. Krause (2003), Advances in the Study

of Behavior 32, 1.
Couzin, I. D., J. Krause, N. R. Franks, and S. A. Levin

(2005), Nature 433, 513.
Couzin, I. D., J. Krause, R. James, G. D. Ruxton, and N. R.

Franks (2002), Journal of Theoretical Biology 218, 1.
Cox, R. G. (1970), The Journal of Fluid Mechanics 44, 791.
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Czirók, A., H. E. Stanley, and T. Vicsek (1997), Journal of
Physics A: Mathematical and General 30, 1375.
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Review Letters 104, 184502.

Glazier, J. A., and F. m. c. Graner (1993), Physical Review
E 47 (3), 2128.

Gotwald, J. W. H. (1995), Army ants: the biology of social
predation (Cornell University Press).

Gov, N. S. (2007), Proceeding of the National Academy of
Sciences of the United States of America 104, 15970.

Graner, F. m. c., and J. A. Glazier (1992), Physical Review
Letters 69 (13), 2013.
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Grégoire, G., H. Chaté, and Y. Tu (2003), Physica D 181,
157.

Grossman, D., I. S. Aranson, and E. B. Jacob (2008), New
Journal of Physics 10, 023036.

Grunbaum, D. (1998), Evolutionary Ecology 12, 503.
Ha, S. Y., K. Lee, and D. Levy (2009), Communications in

Mathematical Sciences 7, 453.
Ha, S.-Y., and J.-G. Liu (2009), Communication in Mathe-

matical Sciences 7, 297.
Ha, S.-Y., and E. Tadmor (2008), Kinetic and Related Models

1, 415.
Halloy, J., G. Sempo, G. Caprari, C. Rivault, M. Asadpour,

F. Tache, I. Said, V. Durier, S. Canonge, J. M. Ame, C. De-
train, N. Correll, A. Martinoli, F. Mondada, R. Siegwart,
and J. L. Deneubourg (2007), Science 318, 1155.

Hatwalne, Y., S. Ramaswamy, M. Rao, and R. A. Simha
(2004), Physical Review Letters 92 (11), 118101.

Hayakawa, Y. (2010), Europhysics Letters 89, 48004.
Helbing, D., I. Farkas, and T. Vicsek (2000), Nature 407,

487.
Helbing, D., F. Schweitzer, J. Keltsch, and P. Molnár (1997),

Physical Review E 56 (3), 2527.
Helfman, G., B. Collette, and D. Facey (1997), The Diversity

of Fishes (Wiley-Blackwell).
Hemelrijk, C. K., and H. Hildenbrandt (2008), Ethology 114,

245.
Hemelrijk, C. K., and H. Kunz (2005), Behavioral Ecology

16 (1), 178.
Heppner, F. (1997), in Animal groups in three dimensions,

edited by J. K. Parrish and W. M. Hamner (Cambridge
University Press) pp. 68–89.

Heppner, F., and U. Grenander (1990), in The ubiquity of
chaos, edited by E. Krasner (AAAS Publications) pp. 233–
238.

Hoare, D. J., I. D. Couzin, J. G. J. Godin, and J. Krause
(2004), Animal Behaviour 67, 155.

Holland, O., J. Woods, R. D. Nardi, and A. Clark (2005),
Proceedings of the IEEE Swarm Intelligence Symposium ,
217.

Holldobler, B., and E. O. Wilson (2008), The Superorganism:
The Beauty, Elegance, and Strangeness of Insect Societies
(W. W. Norton & Company).

Huepe, C., and M. Aldana (2004), Physical Review Letters
92, 168701.

Huepe, C., and M. Aldana (2008), Physica A 387, 2809.
Hunter, J. R. (1966), Journal of the Fisheries Research Board

of Canada 23, 547.
Huth, A., and C. Wissel (1992), Journal of Theoretical Biol-

ogy 156, 365.
Huth, A., and C. Wissel (1994), Ecological Modelling 75-76,

135.
Ibele, M., T. E. Mallouk, and A. Sen (2009), Angewandte

Chemie International Edition 48, 3308.
Ihle, T. (2010), arXiv:1006.1825v1.
Ishikawa, T., J. T. Locsei, and T. J. Pedley (2008), Journal

of Fluid Mechanics 615, 401.
Ishikawa, T., and T. J. Pedley (2008), Physical Review Let-

ters 100, 088103.
Isihara, A. (1971), Statistical Physics (Academic Press, New

York).
Jadbabaie, A., J. Lin, and A. S. Morse (2003), IEEE Trans-

actions on Automatic Control 48, 988.
Kaiser, D. (2003), Nature Reviews Microbiology 1, 45.
Kamimura, A., and T. Ohira (2010), New Journal of Physics

12, 053013.
Keller, E., and L. Segel (1971), J. Theor. Biol. 30, 225.
Kelly, I., and D. Keating (1996), Proceedings of The Third

International Conference on Mechatronics and Machine Vi-
sion in Practice 1, 14.

Kessler, D. A., and H. Levine (1993), Physical Review E 48,
4801.

Keys, G. C., and L. A. Dugatkin (1990), Condor 92, 151.
King, A. J., C. M. S. Douglas, E. Huchard, N. J. B. Isaac,

and G. Cowlishaw (2008), Current Biology 18, 1833.
Környei, Z., A. Czirók, T. Vicsek, and E. Madarász (2000),

Journal of Neuroscience Research 61, 421.
Krause, J., D. Hoare, S. Krause, C. K. Hemelrijk, and D. I.

Rubenstein (2000), Fish and Fisheries 1, 82.
Krause, J., G. D. Ruxton, and S. Krause (2010), Trends in

Ecology and Evolution 25, 28.
Kudrolli, A. (2010), Physical Review Letters 104, 088001.
Kudrolli, A., G. Lumay, D. Volfson, and L. S. Tsimring

(2008), Physical Review Letters 100, 058001.
Kulinskii, V. L., and A. A. Chepizhko (2009), Mathematical

and Statistical Physics 1198, 25.
Kunz, H., and C. K. Hemelrijk (2003), Artificial life 9, 237.
Lauga, E., and T. R. Powers (2009), Reports on Progress in

Physics 72, 096601.
Lighthill, M. J. (1952), Communications in Pure and Applied



50

Mathematics 5, 109.
Lindhe, M., P. Ogren, and K. Johansson (2005), Proceed-

ings of IEEE International Conference on Robotics and
Automation, ICRA’05 2, 1785.

Lipperts, S., and B. Kreller (1999), in Proceedings of the 5th
International Conference of Information Systems, Analysis
and Synthesis.

Lukeman, R., Y.-X. Li, and L. Edelstein-Keshet (2010), Pro-
ceeding of the National Academy of Sciences of the United
States of America 107, 12576.

Major, P. F., and L. M. Dill. (1978), Behavioral Ecology and
Sociobiology 4, 111.

Makris, N. C., P. Ratilal, S. Jagannathan, Z. Gong, M. An-
drews, I. Bertsatos, O. R. Godø, R. W. Nero, and J. M.
Jech (2009), Science 323, 1734.

Makris, N. C., P. Ratilal, D. T. Symonds, S. Jagannathan,
S. Lee, and R. W. Nero (2006), Science 311, 660.

Maree, A. F. M., and P. Hogeweg (2001), Proceedings of the
National Academy of Science (PNAS) 98, 3879.

Marshall, M. B. (2005), A Swarm Intelligence Approach to
Distributed Mobile Surveillance, Master’s thesis (Virginia
Polytechnic Institute and State University).

Mataric, M. J. (1994), Interaction and Intelligent Behavior,
Tech. Rep. (MIT EECS PhD Thesis AITR-1495, MIT AI
Lab).

McFarland, W., and A. Okubo (1997), in Animal groups
in three dimensions, edited by J. K. Parrish and W. M.
Hamner (Cambridge University Press) pp. 301–312.

Mehandia, V., and P. Nott (2008), Journal of Fluid Mechan-
ics 595, 239.

Mendelson, N. H., A. Bourque, K. Wilkening, K. R. Anderson,
and J. C. Watkins (1999), Journal of Bacteriology 181, 600.

Mishra, S., A. Baskaran, and M. C. Marchetti (2010), Phys-
ical Review E 81, 061916.

Moscana, A. (1952), Experimental Cell Research 3, 535.
Moyle, P. B., and J. J. Cech (2003), Fishes: An Introduction

to Ichthyology, 5th ed. (Benjamin Cummings).
Nagano, S. (1998), Physical Review Letters 80 (21), 4826.

Nagy, M., Z. Ákos, D. Biro, and T. Vicsek (2010), Nature
464, 890.

Nagy, M., I. Daruka, and T. Vicsek (2007), Physica A 373,
445.

Narayan, V., N. Menon, and S. Ramaswamy (2006), Journal
of Statistical Mechanics: Theory and Experiment , 01005.

Narayan, V., S. Ramaswamy, and N. Menon (2007), Science
317, 105.

Nardi, R. D., and O. Holland (2006), in In Proceedings of the
SAB Workshop on Swarm Robotics (Springer) pp. 116–128.

Newman, M. E. J. (2004), The European Physical Journal B
38, 321.

Newman, M. E. J. (2006), Proceeding of the National
Academy of Sciences of the United States of America 103,
8577.

Olfati-Saber, R. (2006), IEEE Transactions on Automatic
Control 51, 401.

Olfati-Saber, R., J. A. Fax, and R. M. Murray (2007), Pro-
ceedings of the IEEE 95, 215.

Olfati-Saber, R., and R. M. Murray (2004), IEEE Transac-
tions on Automatic Control 49, 1520.

Ordemann, A., G. Balazsi, and F. Moss (2003), Physica A
325, 260.

Palla, G., A.-L. Barabási, and T. Vicsek (2007), Nature 446,
664.
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