MATHEMATIK I - WS 2022/2023 6. ÜBUNGSBLATT LINEARE ALGEBRA

Aufgabe 26

Gegeben sei eine *reguläre* $n \times n$ -Matrix A über \mathbb{R} mit $n \geq 2$. Geben Sie für jede der folgenden Aussagen an, ob sie unter diesen Umständen *falsch* [F] oder *richtig* [R] ist.

F	K	← Bitte ankreuzen
		Es gilt Rang $A = 1$.
		Durch elementare Zeilenumformungen kann eine Zeile von A vollständig eli-
		miniert werden, d. h. es kann auf diese Weise eine komplette Nullzeile erzeugt
		werden.
		Das homogene lineare Gleichungssystem $A\vec{x} = \vec{0}$ hat unendlich viele Lösungen.
		Durch geeignete Spaltenvertauschungen kann A in eine singuläre Matrix
		überführt werden.
		Sind \vec{v} und $\vec{w} \in \mathbb{R}^n$ zwei Löungsvektoren des inhomogenen linearen Glei-
		chungssystems $A\vec{x} = \vec{b}$, so löst deren Differenz das homogene lineare Glei-
		chungssystem $A\vec{x} = \vec{0}$.
		Es gibt auf jeden Fall mindestens einen Vektor $\vec{v} \in \mathbb{R}^n$, so dass das lineare Glei-
		chungssystem $A\vec{x} = \vec{v}$ keine Lösung besitzt.
		Spaltenzahl, Zeilenzahl und Rang der Matrix A stimmen überein.
		Für jeden Vektor $\vec{b} \in \mathbb{R}^n$ hat das lineare Gleichungssystem $A\vec{x} - \vec{b} = \vec{0}$ genau
		eine Lösung.
		Das Tableau $[A E_n]$ ist durch elementare Zeilenumformungen in ein Tableau der
		Gestalt $[E_n *]$ überführbar.
		Es gibt keine $n \times n$ Matrix B über \mathbb{R} mit $BA = E_n = AB$.
		Die Matrix <i>A</i> ist invertierbar.
		Es gilt $0 \le \operatorname{Rang} A \le n - 1$.
		Es gibt eine nicht-triviale Lösung des homogenen linearen Gleichungssystems
		$A\vec{x} = \vec{0}$.
		Eine Matrix <i>B</i> , die aus <i>A</i> durch elementare Zeilen- und/oder Spaltenumformun-
		gen hervorgeht, ist ebenfalls regulär.
		Das homogene lineare Gleichungssystem $A\vec{x} = \vec{0}$ hat nur eine Lösung, nämlich
		den Nullvektor.

Aufgabe 27

Das Zieltableau eines inhomogenen Linearen Gleichungsgleichungssystems laute

$$\left[\begin{array}{cccc|cccc|cccc}
1 & 0 & 0 & 1 & -4 & 0 & 9 \\
0 & 1 & 0 & 3 & 1 & 1 & -2 \\
0 & 0 & 1 & 0 & 7 & -1 & 3
\end{array}\right]$$

Aus wievielen Unbekannten besteht das lineare Gleichungsystem? Geben Sie die Lösungsmenge in der Kurzschreibweise mit den spitzen Klammern $(\langle \ldots \rangle)$ an. Geben Sie vier verschiedene

Lösungsvektoren an.

Aufgabe 28

Zeigen Sie für $A \in \mathcal{M}(m \times n, \mathbb{K})$ und $B \in \mathcal{M}(n \times p, \mathbb{K})$, dass $(AB)^T = B^T A^T$ gilt.

Aufgabe 29

Gegeben Sei die 3×4 -Matrix

$$A = \left(\begin{array}{rrrr} 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 \end{array}\right)$$

Geben Sie zwei reguläre Matrizen $T \in GL(2,\mathbb{R})$ und $S \in GL(3,\mathbb{R})$ mit

$$TAS = \begin{pmatrix} E_r & | & * \\ \hline 0 & \cdots & 0 \end{pmatrix}$$

mit r = Rang(A)

Aufgabe 30

- a) Es sei A eine reguläre Matrix. Zeigen sie: A^T ist regulär und es gilt $(A^T)^{-1} = (A^{-1})^T$.
- b) Es seien $A, B, C \in \mathcal{M}(n \times m, \mathbb{K})$. Zeigen Sie

b.a)
$$A \sim B \wedge B \sim C \Rightarrow A \sim C$$

b.b)
$$A \sim B \iff \operatorname{Rang} A = \operatorname{Rang} B$$